Optimasi Model CNN Berbasis Transfer Learning Untuk Klasifikasi Pneumonia pada Citra X-Ray Dada
DOI:
https://doi.org/10.32664/smatika.v15i01.1985Kata Kunci:
DenseNet-121, Fine-Tuning, Pneumonia, Transfer LearningAbstrak
Pneumonia merupakan salah satu penyebab utama kematian anak di dunia dan diagnosisnya bergantung pada interpretasi citra radiografi dada (X-ray) yang rentan terhadap kesalahan manusia. Penelitian ini bertujuan mengoptimalkan model Convolutional Neural Network (CNN) berbasis transfer learning dengan arsitektur DenseNet-121 untuk klasifikasi pneumonia pada citra X-ray dada. Model dikembangkan menggunakan dataset dari Kaggle yang terdiri atas dua kelas: Normal dan Pneumonia. Data mengalami pra-pemrosesan berupa augmentasi dan penyeimbangan kelas. Lima strategi fine-tuning diuji, mulai dari hanya melatih classifier hingga membuka seluruh lapisan pretrained. Evaluasi dilakukan menggunakan metrik akurasi, presisi, recall, F1-score, dan ROC-AUC. Hasil menunjukkan bahwa strategi fine-tuning dengan membuka blok 3 sampai 4 (Unfreeze Block 3–4) menghasilkan performa terbaik dengan akurasi 94,39%, F1-score 95,61%, dan ROC-AUC 98,04%. Studi ini menunjukkan bahwa strategi fine-tuning selektif mampu meningkatkan performa klasifikasi secara signifikan dibanding melatih hanya classifier atau seluruh jaringan.
Referensi
R. G. Bender et al., “Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: a systematic analysis from the Global Burden of Disease Study 2021,†Lancet Infect Dis, vol. 24, no. 9, pp. 974–1002, Sep. 2024, doi: 10.1016/S1473-3099(24)00176-2.
F. M. Qaimkhani, M. Hussain, Y. Shiren, and J. Xingfang, “Pneumonia Detection Using Deep Learning Methods,†International Journal Of Scientific Advances, vol. 3, no. 3, 2022, doi: 10.51542/ijscia.v3i3.32.
M. Husna, F. Dewi Pertiwi, and A. Saputra Nasution, “FAKTOR-FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN PNEUMONIA PADA BALITA DI PUSKESMAS SEMPLAK KOTA BOGOR 2020,†PROMOTOR, vol. 5, no. 3, pp. 273–280, May 2022, doi: 10.32832/pro.v5i3.6168.
S. Showkat and S. Qureshi, “Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia,†Chemometrics and Intelligent Laboratory Systems, vol. 224, p. 104534, May 2022, doi: 10.1016/j.chemolab.2022.104534.
W. B. Gefter, B. A. Post, and H. Hatabu, “Commonly Missed Findings on Chest Radiographs,†Chest, vol. 163, no. 3, pp. 650–661, Mar. 2023, doi: 10.1016/j.chest.2022.10.039.
D. J. Mollura et al., “Artificial Intelligence in Low- and Middle-Income Countries: Innovating Global Health Radiology,†Radiology, vol. 297, no. 3, pp. 513–520, Dec. 2020, doi: 10.1148/radiol.2020201434.
M. M. Zulfa and C. Sri Kusuma Aditya, “CATARACT CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK (CNN) INCEPTION RESNETV2,†Jurnal Teknik Informatika (Jutif), vol. 5, no. 5, pp. 1299–1307, Oct. 2024, doi: 10.52436/1.jutif.2024.5.5.2340.
E. C. Yaurentius, T. R. D. Saputri, E. Tanuwijaya, and R. E. Sutanto, “COMPARATIVE STUDY OF CNN-BASED ARCHITECTURES ON EYE DISEASES CLASSIFICATION USING FUNDUS IMAGES TO AID OPHTHALMOLOGIST,†Jurnal Teknik Informatika (Jutif), vol. 6, no. 1, pp. 249–257, Feb. 2025, doi: 10.52436/1.jutif.2025.6.1.3699.
T. Rahman et al., “Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection Using Chest X-ray,†Applied Sciences, vol. 10, no. 9, p. 3233, May 2020, doi: 10.3390/app10093233.
N. Nurhaeni, S. E. Prastya, A. Hidayat, and F. N. Anisa, “Pemodelan Sistem Deteksi Parasit Malaria pada Citra Mikroskopis Sel Darah Menggunakan Metode Deep Learning,†SMATIKA JURNAL, vol. 14, no. 02, pp. 409–416, Dec. 2024, doi: 10.32664/smatika.v14i02.1475.
A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,†Sustainability, vol. 15, no. 7, p. 5930, Mar. 2023, doi: 10.3390/su15075930.
H. E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari, M. E. Maros, and T. Ganslandt, “Transfer learning for medical image classification: a literature review,†BMC Med Imaging, vol. 22, no. 1, p. 69, Dec. 2022, doi: 10.1186/s12880-022-00793-7.
Z. Zhao, L. Alzubaidi, J. Zhang, Y. Duan, and Y. Gu, “A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations,†Expert Syst Appl, vol. 242, p. 122807, May 2024, doi: 10.1016/j.eswa.2023.122807.
M. Salehi, R. Mohammadi, H. Ghaffari, N. Sadighi, and R. Reiazi, “Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images,†Br J Radiol, vol. 94, no. 1121, May 2021, doi: 10.1259/bjr.20201263.
M. E. H. Chowdhury et al., “Can AI Help in Screening Viral and COVID-19 Pneumonia?,†IEEE Access, vol. 8, pp. 132665–132676, 2020, doi: 10.1109/ACCESS.2020.3010287.
A. Alhudhaif, K. Polat, and O. Karaman, “Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images,†Expert Syst Appl, vol. 180, p. 115141, Oct. 2021, doi: 10.1016/j.eswa.2021.115141.
T. Zhou, X. Ye, H. Lu, X. Zheng, S. Qiu, and Y. Liu, “Dense Convolutional Network and Its Application in Medical Image Analysis,†Biomed Res Int, vol. 2022, no. 1, Jan. 2022, doi: 10.1155/2022/2384830.
A. Davila, J. Colan, and Y. Hasegawa, “Comparison of fine-tuning strategies for transfer learning in medical image classification,†Image Vis Comput, vol. 146, p. 105012, Jun. 2024, doi: 10.1016/j.imavis.2024.105012.
Paul Mooney, “Chest X-Ray Images (Pneumonia),†Kaggle. Accessed: Mar. 24, 2025. [Online]. Available: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
A. A. Handoko, M. A. Rosid, and U. Indahyanti, “Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima,†SMATIKA JURNAL, vol. 14, no. 01, pp. 96–110, Jul. 2024, doi: 10.32664/smatika.v14i01.1196.
V. Praskatama, C. A. Sari, E. H. Rachmawanto, and N. Mohd Yaacob, “PNEUMONIA PREDICTION USING CONVOLUTIONAL NEURAL NETWORK,†Jurnal Teknik Informatika (Jutif), vol. 4, no. 5, pp. 1217–1226, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.1353.
Y. Azhar, W. Priyo Wicaksono, and Z. Sari, “PNEUMONIA DIAGNOSIS THROUGH DEEP LEARNING: RESNET50V2 MODEL IMPLEMENTATION,†vol. 13, no. 2, 2024, doi: 10.23887/v13i2.72068.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Penulis telah menyetujui bahwa pemegang hak cipta adalah SMATIKA Jurnal. Dan Author berhak menyebarkan artikel tanpa seijin SMATIKA jurnal.