Prediksi Status Pekerjaan Lulusan SMK Menggunakan Algoritma Random Forest: Analisis Multifaktor Akademis, Sosial, dan Keluarga

Penulis

  • Muchamad Firmansyah Tubira Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
  • Yulian Findawati Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
  • Rohman Dijaya Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
  • Yunianita Rahmwati Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.32664/smatika.v15i02.1804

Kata Kunci:

Faktor Keluarga, Machine Learning, Prediksi, Random Forest, SMK, Status Pekerjaan.

Abstrak

Penelitian ini bertujuan untuk mengembangkan model prediksi status pekerjaan lulusan  siswa Sekolah Menengah Atas (SMK) di Indonesia dengan menggunakan analisis multifaktor yang melibatkan kinerja akademik, lingkungan sosial, dan masyarakat. Penelitian ini menggunakan pendekatan kuantitatif dengan algoritma Random Forest untuk mengumpulkan data dalam jumlah besar dan memberikan prediksi yang spesifik. Model tersebut memprediksi status pekerja lulusan siswa SMK sebesar 76%, yang menunjukkan kinerja kerja yang baik. Penelitian ini juga menemukan bahwa faktor masyarakat yang signifikan memengaruhi status pekerjaan lulusan siswa SMK secara signifikan (36,5%), diikuti oleh faktor sosial (35,2%) dan akademik (25,9%). Penelitian ini mendorong sekolah, orang tua, dan pemerintah untuk fokus pada pendidikan holistik SMK, seperti kolaborasi antara sekolah dan industri, untuk meningkatkan status pekerjaan lulusan siswa SMK.

Referensi

[1] R. Bakri, N. P. Astuti, and A. S. Ahmar, “Machine Learning Algorithms with Parameter Tuning to Predict Students’ Graduation-on-time: A Case Study in Higher Education,” Journal of Applied Science, Engineering, Technology, and Education, vol. 4, no. 2, pp. 259–265, Dec. 2022, doi: 10.35877/454ri.asci1581.

[2] R. Nagovitsyn, “Predicting Student Employment in Teacher Education Using Machine Learning Algorithms,” Education and Self Development, vol. 18, no. 2, pp. 133–148, Jun. 2023, doi: 10.26907/esd.18.2.10.

[3] M. S. Hassan and A. Goyal, “Predicting Student Placements Using Machine Learning Algorithms [1],” 2023.

[4] Muhammad Hadiza Baffa, Muhammad Abubakar Miyim, and Abdullahi Sani Dauda, “Machine Learning for Predicting Students’ Employability,” UMYU Scientifica, vol. 2, no. 1, pp. 001–009, Feb. 2023, doi: 10.56919/usci.2123_001.

[5] R. A. Safitri and R. Hidayati, “Komparasi Metode K-Nearest Neighbor dan Naïve Bayes untuk Mengklasifikasi Resiko Diabetes Di Posbindu Desa Bulupitu,” SMATIKA JURNAL, vol. 14, no. 02, pp. 297–303, Dec. 2024, doi: 10.32664/smatika.v14i02.1350.

[6] N. M. Andini, Y. Findawati, I. R. I. Astutik, and A. Eviyanti, “Implementasi Convolutional Neural Network (CNN) Untuk Mendeteksi Ujaran Kebencian Dan Emosi Di Twitter,” SMATIKA JURNAL, vol. 14, no. 02, pp. 314–325, Dec. 2024, doi: 10.32664/smatika.v14i02.1346.

[7] M. Pal and S. Parija, “Prediction of Heart Diseases using Random Forest,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1817/1/012009.

[8] S. Dass, K. Gary, and J. Cunningham, “Predicting student dropout in self-paced mooc course using random forest model,” Information (Switzerland), vol. 12, no. 11, Nov. 2021, doi: 10.3390/info12110476.

[9] M. H. Baffa, M. A. Miyim, and A. S. Dauda, “Machine Learning for Predicting Students’ Employability,” UMYU Scientifica, vol. 2, no. 1, pp. 001–009, Feb. 2023, doi: 10.56919/USCI.2123_001.

[10] S. Y. Ong, C. Y. Ting, H. N. Goh, A. Quek, and C. L. Cham, “Workplace Preference Analytics Among Graduates,” Journal of Informatics and Web Engineering, vol. 2, no. 2, pp. 233–248, Sep. 2023, doi: 10.33093/jiwe.2023.2.2.17.

[11] T. T. Huynh-Cam, L. S. Chen, and H. Le, “Using decision trees and random forest algorithms to predict and determine factors contributing to first-year university students’ learning performance,” Algorithms, vol. 14, no. 11, Nov. 2021, doi: 10.3390/a14110318.

[12] S. Tripathi, “Predicting Unpaid Care Work in India Using Random Forest: An Analysis of Socioeconomic and Demographic Factors,” Social Policy and Society, 2024, doi: 10.1017/S1474746424000447.

[13] X. Lu and L. Wei, “Teaching reform and innovation of vocational development and employment guidance courses in colleges and universities based on random forest model,” Applied Mathematics and Nonlinear Sciences, vol. 9, no. 1, Jan. 2024, doi: 10.2478/amns.2023.2.00229.

[14] S. Dass, K. Gary, and J. Cunningham, “Predicting student dropout in self-paced mooc course using random forest model,” Information (Switzerland), vol. 12, no. 11, Nov. 2021, doi: 10.3390/info12110476.

[15] T. A. Cardona, “Predicting Student Degree Completion using Random Forest Predicting Student Degree Completion using Random Forests.”

[16] Muhammad Hadiza Baffa, Muhammad Abubakar Miyim, and Abdullahi Sani Dauda, “Machine Learning for Predicting Students’ Employability,” UMYU Scientifica, vol. 2, no. 1, pp. 001–009, Feb. 2023, doi: 10.56919/usci.2123_001.

[17] B. Saini, G. Mahajan, H. Sharma, and Ziniya, “An Analytical Approach to Predict Employability Status of Students,” IOP Conf Ser Mater Sci Eng, vol. 1099, no. 1, p. 012007, Mar. 2021, doi: 10.1088/1757-899x/1099/1/012007.

[18] T. T. Huynh-Cam, L. S. Chen, and H. Le, “Using decision trees and random forest algorithms to predict and determine factors contributing to first-year university students’ learning performance,” Algorithms, vol. 14, no. 11, Nov. 2021, doi: 10.3390/a14110318.

[19] X. Lin, “WITHDRAWN: College student employment data platform based on FPGA and machine learning.” [Online]. Available: https://www.elsevier.co

[20] G. Elsharkawy, Y. Helmy, and E. Yehia, “Employability Prediction of Information Technology Graduates using Machine Learning Algorithms.” [Online]. Available: www.ijacsa.thesai.org

[21] R. Bakri, N. P. Astuti, and A. S. Ahmar, “Machine Learning Algorithms with Parameter Tuning to Predict Students’ Graduation-on-time: A Case Study in Higher Education,” Journal of Applied Science, Engineering, Technology, and Education, vol. 4, no. 2, pp. 259–265, Dec. 2022, doi: 10.35877/454ri.asci1581.

Unduhan

Diterbitkan

2025-12-17