Classification of Rice Leaf Diseases Using CNN-SVM Hybrid Model
DOI:
https://doi.org/10.32664/smatika.v15i02.1548Kata Kunci:
CNN, klasifikasi Gambar, Model Hybrid, Penyakit Padi, SVMAbstrak
Rice production in Indonesia faces significant challenges due to the declining area of agricultural land and the prevalence of diseases such as Bacterial Leaf Blight, Blast, and Brown Spot, which can reduce yields by up to 80% and threaten national food security. These diseases not only disrupt production stability but also cause substantial losses for farmers. Early identification is crucial to prevent such losses; however, farmers often struggle with limited knowledge, leading to misdiagnosis and improper management. To address this issue, this study proposes the development of a hybrid disease classification model for rice leaves based on Convolutional Neural Network (CNN) and Support Vector Machine (SVM). The model is designed following the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology, encompassing stages from business understanding to evaluation. Using a dataset containing 11,790 images of rice leaves from nine disease classes, the VGG-16 architecture is utilized for feature extraction, while SVM handles multi-class classification through the one-vs-rest approach. Evaluation results demonstrate a model accuracy of 95%, with high precision, recall, and F1-scores across most disease classes. These findings highlight the model's significant potential to aid farmers in the early detection of rice diseases.
Referensi
[1] N. A. Mohidem, N. Hashim, R. Shamsudin, and H. C. Man, "Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content," Agriculture (Switzerland), vol. 12, no. 6, p. 741, 2022, doi: 10.3390/agriculture12060741.
[2] Badan Pusat Statistik, "Luas Panen Padi Tahun 2024 Diperkirakan Sebesar 10,05 Juta Hektare dengan Produksi Padi Sekitar 52,66 Juta Ton Gabah Kering Giling (GKG)," 15 Okt. 2024. [Online]. Available: https://www.bps.go.id/id/pressrelease/2024/10/15/2376/luas-panen-padi-tahun-2024-diperkirakan-sebesar-10-05-juta-hektare-dengan-produksi-padi-sekitar-52-66-juta-ton-gabah-kering-giling--gkg--.html. [Access: 10 Nov. 2024].
[3] M. Aria, M. R. A. Muhammad, Y. A. Yufis, and V. R. S. N. Vinna, "Disease detection on rice leaves through deep learning with InceptionV3 method," Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 7, no. 5, pp. 1147–1154, 2023, doi: 10.29207/resti.v7i5.4344.
[4] L. Shanti, G. L. Devi, G. Kumar, and H. Shashidhar, "Molecular Marker-Assisted Selection: A Tool for Insulating Parental Lines of Hybrid Rice Against Bacterial Leaf Blight," International Journal of Plant Pathology, vol. 1, pp. 114–123, Mar. 2010, doi: 10.3923/ijpp.2010.114.123.
[5] U. N. Oktaviana, R. Hendrawan, A. D. K. Annas, and G. W. Wicaksono, "Klasifikasi penyakit padi berdasarkan citra daun menggunakan model terlatih ResNet101," Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 5, no. 6, pp. 1216–1222, 2021, doi: 10.29207/resti.v5i6.3607.
[6] A. Jinan and B. H. Hayadi, "Klasifikasi penyakit tanaman padi menggunakan metode convolutional neural network melalui citra daun (multilayer perceptron)," Journal of Computer and Engineering Science, vol. 1, no. 2, 2022.
[7] S. Zahrah, R. Saptono, and E. Suryani, "Identifikasi gejala penyakit padi menggunakan operasi morfologi citra," dalam Seminar Nasional Ilmu Komputer, 2016.
[8] S. Sheila, I. Permata Sari, A. . Bagas Saputra, M. Kharil Anwar, and F. Restu Pujianto, “Detection of Diseases in Rice Leaves Based on Image Processing Using the Convolutional Neural Network (CNN) Method”, JURNAL MULTIMEDIA NETWORKING INFORMATICS, vol. 9, no. 1, pp. 27–34, Apr. 2023.
[9] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.
[10] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, "A state-of-the-art survey on deep learning theory and architectures," Electronics, vol. 8, no. 3, p. 292, 2019, doi: 10.3390/electronics8030292.
[11]S. Yuliany, Aradea, and A. Nur Rachman, "Implementasi deep learning pada sistem klasifikasi hama tanaman padi menggunakan metode convolutional neural network (CNN)," Jurnal Buana Informatika, vol. 13, no. 1, 2022.
[12]S. V. Darshan, "Automated diagnosis and cataloguing of foliar disease in apple trees using ensemble of deep neural networks," International Research Journal of Engineering and Technology, vol. 7, no. 5, pp. 4230–4237, 2020.
[13]M. Alkhaleefah and C. -C. Wu, "A Hybrid CNN and RBF-Based SVM Approach for Breast Cancer Classification in Mammograms," 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 2018, pp. 894-899, doi: 10.1109/SMC.2018.00159.
[14]U. Syaripudin, D. Suparman, Y. A. Gerhana, A. P. Rahayu, M. Mintarsih, and R. Alawiyah, "Chatbot for signaling Quranic verses science using support vector machine algorithm" Jurnal Online Informatika, vol. 6, no. 2, p. 225, 2021, doi: 10.15575/join.v6i2.827.
[15]M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, "Perbandingan metode Naïve Bayes dan Support Vector Machine pada analisis sentimen Twitter," SMATIKA: STIKI Informatika Jurnal, vol. 10, no. 2, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
[16]R. A. Saputra, S. Wasyianti, A. Supriyatna, and D. F. Saefudin, "Penerapan algoritma convolutional neural network dan arsitektur MobileNet pada aplikasi deteksi penyakit daun padi," JURNAL SWABUMI, vol. 9, no. 2, pp. 185–189, 2021, doi: 10.31294/swabumi.v9i2.11678.
[17]R. Suhendra, I. Juliwardi, and Sanusi, "Identifikasi dan klasifikasi penyakit daun jagung menggunakan support vector machine," Jurnal Teknologi Informasi, vol. 1, no. 1, pp. 29–35, 2022, doi: 10.35308/.v1i1.5520.
[18]A. A. Mujiono, Kartini, and E. Y. Puspaningrum, "Implementasi model hybrid CNN-SVM pada klasifikasi kondisi kesegaran daging ayam," Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 1, 2024, doi: 10.36040/jati.v8i1.8855.
[19][A. D. Putro and H. Tantyoko, "Hybrid algoritma VGG16-Net dengan Support Vector Machine untuk klasifikasi jenis buah dan sayuran," Jurnal Teknologi Informasi dan Multimedia (JTIM), vol. 5, no. 2, pp. 56–65, Jul. 2023, doi: 10.35746/jtim.v5i2.335.
[20]C. Schröer, F. Kruse, and J. M. Gómez, "A systematic literature review on applying CRISP-DM process model," Procedia Computer Science, vol. 181, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.
[21]Y. Itadori, "Rice leaf dataset: Detecting rice leaf diseases," 2023. [Online]. Available: https://www.kaggle.com/datasets/loki4514/rice-leaf-diseases-detection. [Access: 10 Sep. 2024].
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 SMATIKA JURNAL : STIKI Informatika Jurnal

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Penulis telah menyetujui bahwa pemegang hak cipta adalah SMATIKA Jurnal. Dan Author berhak menyebarkan artikel tanpa seijin SMATIKA jurnal.

