Klasifikasi Ras Kucing Dengan Pendekatan Convolutional Neural Networks Menggunakan Arsitektur Inception V4
DOI:
https://doi.org/10.32664/smatika.v15i02.1547Kata Kunci:
Ras kucing, CNN, Inception V4, Pengenalan gambar, KlasifikasiAbstrak
Klasifikasi ras kucing berdasarkan gambar menjadi tantangan karena perbedaan penampilan antar ras yang halus dan pengaruh lingkungan. Penelitian ini mengembangkan sistem klasifikasi otomatis berbasis arsitektur Inception V4 dengan pendekatan CRISP-DM, meliputi pemahaman bisnis, persiapan data, pemodelan, evaluasi, dan penerapan. Dataset yang digunakan berasal dari Oxford IIIT Pet Dataset, mencakup 12 ras kucing populer, dan diproses melalui pembersihan, augmentasi, normalisasi, serta pembagian menjadi data pelatihan (80%) dan validasi (20%). Model dilatih selama 25 epoch, mencapai akurasi validasi tertinggi 93.31%, dengan rata-rata precision, recall, dan f1-score sebesar 93%. Sistem ini diterapkan dalam aplikasi web berbasis Flask, memungkinkan klasifikasi real-time melalui unggahan gambar. Meskipun performa keseluruhan sangat baik, ras tertentu seperti Bengal menunjukkan peluang untuk perbaikan. Hasil ini menunjukkan bahwa model memiliki potensi besar untuk mendukung diagnosis kesehatan hewan peliharaan dan pelestarian ras. Penelitian ini memberikan kontribusi signifikan dalam pengembangan teknologi klasifikasi berbasis gambar, dengan saran untuk meningkatkan performa melalui augmentasi berbasis GAN dan pengujian pada dataset yang lebih beragam untuk generalisasi yang lebih baik.
Referensi
[1] M. Oedin et al., “Cats Felis catus as a threat to bats worldwide: a review of the evidence,” Jul. 01, 2021, Blackwell Publishing Ltd. doi: 10.1111/mam.12240.
[2] P. P. Ridwan, “Ragam Statistik Hewan Peliharaan di Indonesia.” Accessed: May 12, 2024. [Online]. Available: https://goodstats.id/article/ragam-statistik-hewan-peliharaan-di-indonesia-GbtcU
[3] M. Ismu Rahayu, Faiqunisa, and Nugraha, “KLASIFIKASI RAS KUCING MENGGUNAKAN METADATA DATASET KAGGLE DENGAN FRAMEWORK YOLO v5,” 2023.
[4] M. A. A. Fawwaz, K. N. Ramadhani, and F. Sthevanie, “Klasifikasi Ras pada Kucing menggunakan Algoritma Convolutional Neural Network(CNN),” 2020.
[5] R. Gunawan, D. M. I. Hanafie, and A. Elanda, “Klasifikasi Jenis Ras Kucing Dengan Gambar Menggunakan Convolutional Neural Network (CNN),” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 18, no. 4, pp. 1–8, Jan. 2024, doi: 10.35969/interkom.v18i4.318.
[6] N. Azahro Choirunisa, T. Karlita, and R. Asmara, “Deteksi Ras Kucing Menggunakan Compound Model Scaling Convolutional Neural Network,” Technomedia Journal, vol. 6, no. 2, pp. 236–251, Nov. 2021, doi: 10.33050/tmj.v6i2.1704.
[7] A. T. Ramadhan and A. Setiawan, “Catbreedsnet: An Android Application for Cat Breed Classification Using Convolutional Neural Networks,” Jurnal Online Informatika, vol. 8, no. 1, pp. 52–60, Jun. 2023, doi: 10.15575/join.v8i1.1007.
[8] Y. Zhang, J. Gao, and H. Zhou, “Breeds Classification with Deep Convolutional Neural Network,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Feb. 2020, pp. 145–151. doi: 10.1145/3383972.3383975.
[9] P. Rachana, A. Kodipalli, and T. Rao, “Comparison Between ResNet 16 and Inception V4 Network for COVID-19 Prediction,” 2022, pp. 283–290. doi: 10.1007/978-981-19-5482-5_25.
[10] A. Sharma, A. Kodipalli, and T. Rao, “Performance of Resnet-16 and Inception-V4 Architecture to Identify Covid-19 from X-Ray Images,” in 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2022, pp. 1–6. doi: 10.1109/UPCON56432.2022.9986372.
[11] A. Alqahtani et al., “A Transfer Learning Based Approach for COVID-19 Detection Using Inception-v4 Model,” Intelligent Automation and Soft Computing, vol. 35, no. 2, pp. 1721–1736, 2023, doi: 10.32604/iasc.2023.025597.
[12] C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 526–534. doi: 10.1016/j.procs.2021.01.199.
[13] S. Jaggia, A. Kelly, K. Lertwachara, and L. Chen, “Applying the CRISP-DM Framework for Teaching Business Analytics,” 2020.
[14] U. Kannengiesser and J. S. Gero, “MODELLING THE DESIGN OF MODELS: AN EXAMPLE USING CRISP-DM,” in Proceedings of the Design Society, Cambridge University Press, 2023, pp. 2705–2714. doi: 10.1017/pds.2023.271.
[15] S. Huber, H. Wiemer, D. Schneider, and S. Ihlenfeldt, “DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model,” in Procedia CIRP, Elsevier B.V., 2019, pp. 403–408. doi: 10.1016/j.procir.2019.02.106.
[16] J. Brzozowska, J. Pizoń, G. Baytikenova, A. Gola, A. Zakimova, and K. Piotrowska, “DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY,” Applied Computer Science, vol. 19, no. 3, pp. 83–95, 2023, doi: 10.35784/acs-2023-26.
[17] S. S, D. S, and S. N. Reddy, “Efficient Real-time Breed Classification using YOLOv7 Object Detection Algorithm,” in 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), IEEE, Jul. 2023, pp. 1–6. doi: 10.1109/ICCCNT56998.2023.10306688.
[18] M. S. Nazir et al., “A Novel CNN-Inception-V4-Based Hybrid Approach for Classification of Breast Cancer in Mammogram Images,” Wireless Communications and Mobile Computing, vol. 2022, 2022, doi: 10.1155/2022/5089078.
[19] F. Hou, B. Liu, L. Zhuo, Z. Zhuo, and J. Zhang, “Remote Sensing Image Retrieval with Deep Features Encoding of Inception V4 and Largevis Dimensionality Reduction,” Sensing and Imaging, vol. 22, no. 1, Dec. 2021, doi: 10.1007/s11220-021-00341-7.
[20] K. M. Karthick Raghunath, V. Vinoth Kumar, M. Venkatesan, K. K. Singh, T. R. Mahesh, and A. Singh, “XGBoost Regression Classifier (XRC) Model for Cyber Attack Detection and Classification Using Inception V4,” Journal of Web Engineering, vol. 21, no. 4, pp. 1295–1322, May 2022, doi: 10.13052/jwe1540-9589.21413.
[21] M. A. S. Al Husaini, M. H. Habaebi, T. S. Gunawan, M. R. Islam, E. A. A. Elsheikh, and F. M. Suliman, “Thermal-based early breast cancer detection using inception V3, inception V4 and modified inception MV4,” Neural Computing and Applications, vol. 34, no. 1, pp. 333–348, Jan. 2022, doi: 10.1007/s00521-021-06372-1.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 SMATIKA JURNAL : STIKI Informatika Jurnal

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Penulis telah menyetujui bahwa pemegang hak cipta adalah SMATIKA Jurnal. Dan Author berhak menyebarkan artikel tanpa seijin SMATIKA jurnal.

