Implementasi Model CNN ResNet50V2 untuk Klasifikasi Pneumonia pada Citra X-Ray
DOI:
https://doi.org/10.32664/smatika.v15i01.1538Kata Kunci:
CNN, Citra X-ray, Klasifikasi Pneumonia, ResNet50V2, Transfer LearningAbstrak
Pemanfaatan teknologi untuk membangun model yang dapat mengklasifikasi citra medis pneumonia secara otomatis sangat dibutuhkan untuk diagnosis dini. Penelitian ini bertujuan untuk mengimplementasikan model Convolutional Neural Network (CNN) dengan arsitektur ResNet50V2 yang telah terbukti memiliki akurasi tinggi dalam klasifikasi citra medis. Model ini mengadopsi arsitektur residual yang mendalam dan efisien, yang memfasilitasi pelatihan model yang lebih dalam tanpa mengalami masalah vanishing gradient. Penelitian ini melalui empat tahap utama: pengumpulan data citra X-ray pneumonia dan normal, pre-processing data (termasuk pembagian set, transformasi, dan augmentasi), pemodelan menggunakan CNN dengan tuning hyperparameter, dan evaluasi model. Evaluasi dilakukan dengan menggunakan metrik akurasi, F1-score, dan Confusion Matrix. Model CNN dengan ResNet50V2 sebagai backbone mencapai akurasi 97%, menunjukkan kinerja yang sangat baik dalam membedakan antara pneumonia dan normal meskipun terdapat sedikit kesalahan klasifikasi. Meskipun model ini menunjukkan hasil yang mengesankan, tantangan seperti potensi kesalahan klasifikasi pada kasus dengan citra yang tidak jelas atau ambigu tetap ada. Dibandingkan dengan pendekatan sebelumnya, model ini menawarkan keunggulan dalam akurasi dan efisiensi pemrosesan berkat penggunaan ResNet50V2 yang lebih dalam dan lebih canggih. Keunggulan ini diharapkan dapat meningkatkan ketepatan diagnosis otomatis dalam aplikasi medis di masa depan.
Referensi
S. A. Aljawarneh and R. Al-Quraan, “Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray Images.,†Big Data, p., 2023, doi: 10.1089/big.2022.0261.
R. Bhuria, K. S. Gill, D. Upadhyay, and S. Devliyal, “Automated Pneumonia Detection from Chest X-Rays Using Convolutional Neural Networks: Advancements, Optimization, and Performance Analysis,†in 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), 2024, pp. 1360–1364. doi: 10.1109/ICSCSS60660.2024.10624988.
S. Ramadasan, T. Manju, K. Vijayakumar, and S. Prabha, “Classification of Chest Radiographs into Normal and Pneumonia Class Using Fused Deep-Features,†in 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 2024, pp. 1–6. doi: 10.1109/ICONSTEM60960.2024.10568776.
A. Torres et al., “Pneumonia,†Dec. 01, 2021, Nature Research. doi: 10.1038/s41572-021-00259-0.
M. R. Hasan, S. M. A. Ullah, and M. Hasan, “Deep Learning in Radiology:A Transfer-Learning Based Approach for the Identification and Classification of COVID-19 and Pneumonia in Chest X-ray Images,†in 2023 Fourth International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), 2023, pp. 1–6. doi: 10.1109/ICSTCEE60504.2023.10585226.
K. K. L, R. Rajalakshmi, K. Ramalakshmi, A. Lakshmi, G. Subhashini, and G. Theivanathan, “Enhancing Pneumonia Detection Through Convolutional Neural Networks and Data Augmentation In Chest X-Ray Imaging,†in 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), 2024, pp. 715–718. doi: 10.1109/ICACCS60874.2024.10717046.
A. Mabrouk, R. P. D. Redondo, A. Dahou, M. A. Elaziz, and M. Kayed, “Pneumonia Detection on Chest X-ray Images Using Ensemble of Deep Convolutional Neural Networks,†Applied Sciences (Switzerland), vol. 12, no. 13, Jul. 2022, doi: 10.3390/app12136448.
M. Singla, K. S. Gill, S. Malhotra, and S. Devliyal, “Chest X-ray Image Pneumonia Detection using Transfer Learning and Xception CNN Model,†in 2024 International Conference on Intelligent Systems for Cybersecurity (ISCS), 2024, pp. 1–5. doi: 10.1109/ISCS61804.2024.10581194.
H. Liz, M. A. Sánchez-Montañés, A. Tagarro, S. DomÃnguez-RodrÃguez, R. Dagan, and D. Camacho, “Ensembles of Convolutional Neural Network models for pediatric pneumonia diagnosis,†Future Gener. Comput. Syst., vol. 122, pp. 220–233, 2020, doi: 10.1016/j.future.2021.04.007.
G. Vrbancic and V. Podgorelec, “Efficient ensemble for image-based identification of Pneumonia utilizing deep CNN and SGD with warm restarts,†Expert Syst. Appl., vol. 187, p. 115834, 2022, doi: 10.1016/j.eswa.2021.115834.
V. Kant, “A Comprehensive CNN-based Approach to Pneumonia Detection,†in 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), 2024, pp. 958–963. doi: 10.1109/ICOSEC61587.2024.10722467.
A. A. Handoko, M. A. Rosid, and U. Indahyanti, “Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima,†SMATIKA JURNAL, vol. 14, no. 01, pp. 96–110, Jul. 2024, doi: 10.32664/smatika.v14i01.1196.
M. R. Kumar and B. G. Vani, “Implementation of Deep Learning Mechanisms for Detection and Classification of Pneumonia on Chest X-Ray Dataset,†in 2024 International Conference on Computational Intelligence for Green and Sustainable Technologies (ICCIGST), 2024, pp. 1–6. doi: 10.1109/ICCIGST60741.2024.10717560.
I. M. Dendi Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network (Classification of Pneumonia Based on Lung X-rays Images using Convolutional Neural Network),†2020.
J. Mantik, B. Imran, and L. Darmawan Bakti, “Implementation of Machine Learning Model for Pneumonia Classification Based on X-Ray Images,†2021.
Ahmad Naswin and Adityo Permana Wibowo, “Performance Analysis of the Decision Tree Classification Algorithm on the Pneumonia Dataset,†International Journal of Artificial Intelligence in Medical Issues, vol. 1, no. 1, pp. 1–9, May 2023, doi: 10.56705/ijaimi.v1i1.83.
Dr. Sunil L. Bangare, Hrushikesh S. Rajankar, Pavan S. Patil, Karan V. Nakum, and Gopal S. Paraskar, “Pneumonia Detection and Classification using CNN and VGG16,†International Journal of Advanced Research in Science, Communication and Technology, pp. 771–779, May 2022, doi: 10.48175/ijarsct-3851.
F. Antony, H. Irsyad, M. Ezar, and A. Rivan, “KNN Dan Gabor Filter Serta Wiener Filter Untuk Mendiagnosis Penyakit Pneumonia Citra X-RAY Pada Paru-Paru,†Jurnal Algoritme, vol. 1, no. 2, pp. 147–155, 2021.
Lusiana, A. A. Kurniasari, and I. F. Kusumawati, “Enhancing Accuracy in the Detection of Pneumonia in Adult Patients: An Approach by Using Convolutional Neural Networks,†in Lecture Notes in Electrical Engineering, Springer Science and Business Media Deutschland GmbH, 2024, pp. 593–609. doi: 10.1007/978-981-97-1463-6_41.
A. Hafidh, A. #1, A. Arifianto, K. Nur, and R. #3, “Pneumonia Classification from X-ray Images using Residual Neural Network OPEN ACCESS,†Journal on Computing, vol. 5, no. 2, pp. 43–54, 2020, doi: 10.21108/indojc.2020.5.2.454.
M. Harahap, Em Manuel Laia, Lilis Suryani Sitanggang, Melda Sinaga, Daniel Franci Sihombing, and Amir Mahmud Husein, “Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN),†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 70–77, Feb. 2022, doi: 10.29207/resti.v6i1.3373.
W. Li et al., “Machine Learning Model of ResNet50-Ensemble Voting for Malignant–Benign Small Pulmonary Nodule Classification on Computed Tomography Images,†Cancers (Basel), vol. 15, no. 22, Nov. 2023, doi: 10.3390/cancers15225417.
K. S. Gill, V. Anand, R. Chauhan, R. S. Rawat, and R. Gupta, “Kidney Disease X-Ray Image Classification Using a ResNet50V2 Model based Machine Learning Approach,†in 2023 2nd International Conference on Futuristic Technologies (INCOFT), 2023, pp. 1–5. doi: 10.1109/INCOFT60753.2023.10425099.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Penulis telah menyetujui bahwa pemegang hak cipta adalah SMATIKA Jurnal. Dan Author berhak menyebarkan artikel tanpa seijin SMATIKA jurnal.