Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima

Penulis

  • Ahmad Angga Handoko Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
  • Mochamad Alfan Rosid Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
  • Uce Indahyanti Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia

DOI:

https://doi.org/10.32664/smatika.v14i01.1196

Kata Kunci:

aksara bima, convolutional neural network, deep learning, pengenalan, tulisan tangan

Abstrak

Indonesia dengan kaya akan ragam budaya yang dimilikinya, tentu mengakibatkan keberadaan beragam bahasa di dalamnya. Pada dialek suatu wilayah, terdapat lambang-lambang huruf yang mewakili pengungkapan bahasa khas daerah tersebut. Salah satu contoh bahasa yang memperlihatkan karakteristik unik dalam sistem penulisannya adalah bahasa Bima, yang dikenal dengan sebutan aksara Bima. Aksara Bima, atau yang sering disebut sebagai aksara Mbojo adalah sistem tulisan yang secara tradisional digunakan di wilayah Bima, terletak di Provinsi Nusa Tenggara Barat. Aksara Bima masih belum tersebar luas di kalangan masyarakat umum, sehingga penting untuk melestarikannya sebagai bagian dari warisan budaya suku Mbojo. Penelitian ini bertujuan untuk melatih komputer untuk mengenali karakter aksara Bima. Metode Convolutional Neural Network (CNN) digunakan dalam penelitian ini untuk melakukan pengenalan terhadap tulisan tangan aksara Bima. Dataset yang digunakan terdiri dari 2640 citra tulisan tangan aksara Bima dengan 22 kelas. Hasil penelitian menunjukkan kinerja model CNN yang handal, dengan akurasi 97,34%, presisi 97,56%, recall 97,34%, dan f1-score 97,31% pada data uji.

Referensi

Canberra, “Indonesia.†Diakses: 6 Februari 2024. [Daring]. Tersedia pada: https://www.kemlu.go.id/canberra/id/read/indonesia/2186/etc-menu

M. Alfian Tuflih, Mayong, dan Nensilianti, “Pelatihan Membaca dan Menulis Aksara Bima Siswa SMK Negeri 1 Kota Bima,†PENGABDI: Jurnal Hasil Pengabdian Masyarakat, vol. 3, no. 1, hlm. 1–12, 2022, doi: 10.26858/pengabdi.v3i1.33051.

Munawar Sulaiman, “Aksara Mbojo.†Diakses: 30 Oktober 2023. [Daring]. Tersedia pada: https://warisanbudaya.kemdikbud.go.id/?newdetail&detailCatat=6561

Walikota Bima, Peraturan Walikota Kota Bima Nomor 50 Tahun 2019 tentang Penetapan Mata Pelajaran Bahasa, Sejarah, Seni Budaya Dan Ketrampilan Sebagai Mata Pelajaran Muatan Lokal Untuk Sekolah Dasar Dan Sekolah Menengah Pertama Di Kota Bima. Bima, Indonesia: https://peraturan.bpk.go.id/Details/129985/perwali-kota-bima-no-50-tahun-2019, 2019.

F. Bimantoro, A. Aranta, G. Satya Nugraha, R. Dwiyansaputra, dan A. Yudo Husodo, “Pengenalan Pola Tulisan Tangan Aksara Bima menggunakan Ciri Tekstur dan KNN (Handwriting Recognition of Bima Script using Texture Features and KNN),†Journal of Computer Science and Informatics Engineering, vol. 5, no. 1, hlm. 60–67, 2021, doi: 10.29303/jcosine.v5i1.387.

M. I. Fidatama, “Pengenalan Pola Tulisan Tangan Aksara Bima Menggunakan Metode Ekstraksi Ciri Local Binary Pattern, Metode Reduksi Data Latih KSupport Vector Nearest Neighbour, Dan Metode Klasifikasi K-Nearest Neighbour,†Thesis, Universitas Mataram, Mataram, 2021.

R. Aryanto dan M. Alfan Rosid, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Akasara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks (CNN),†Jurnal Informasi dan Teknologi, vol. 5, no. 4, hlm. 258–264, 2023, doi: 10.37034/jidt.v5i1.313.

G. A. Noor, D. I. Mulyana, dan F. Akbar, “Optimasi Image Classification Pada Burung Kenari Dengan Menggunakan Data Augmentasi dan Convolutional Neural Network,†Smart Comp : Jurnalnya Orang Pintar Komputer, vol. 11, no. 2, hlm. 226–238, 2022, doi: 10.30591/smartcomp.v11i2.3530.

D. Darmawan, “Implementasi Metode Convolutional Neural Network (CNN) Dalam Mendeteksi Jenis Sampah,†Thesis, Universitas Jambi, Jambi, 2023.

A. M. T. Andar, N. Fadillah, dan Munawir, “Pengenalan Tulisan Tangan Karakter Aksara Batak Toba dengan Metode Convolutional Neural Network (CNN),†Jurnal Edukasi dan Penelitian Informatika, vol. 9, no. 2, hlm. 242–252, 2023, doi: 10.26418/jp.v9i2.64242.

A. Maharil, “Perbandingan Arsitektur VGG16 Dan ResNet50 Untuk Rekognisi Tulisan Tangan Aksara Lampung,†Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, hlm. 236–243, 2022, doi: 10.33365/jatika.v3i2.2030.

A. Willyanto, D. Alamsyah, dan H. Irsyad, “Identifikasi Tulisan Tangan Aksara Jepang Hiragana Menggunakan Metode CNN Arsitektur VGG-16,†Jurnal Algoritme, vol. 2, no. 1, hlm. 1–11, 2021, doi: 10.35957/algoritme.v2i1.1450.

T. Q. Vinh, L. H. Duy, dan N. T. Nhan, “Vietnamese handwritten character recognition using convolutional neural network,†IAES International Journal of Artificial Intelligence, vol. 9, no. 2, hlm. 276–283, Jun 2020, doi: 10.11591/ijai.v9.i2.pp276-283.

I. Khandokar, M. Hasan, F. Ernawan, S. Islam, dan M. N. Kabir, “Handwritten character recognition using convolutional neural network,†J Phys Conf Ser, vol. 1918, no. 4, hlm. 1–5, Jun 2021, doi: 10.1088/1742-6596/1918/4/042152.

M. Junihardi, S. Sanjaya, L. Handayani, dan F. Syafria, “Klasifikasi Daging Sapi Dan Daging Babi Menggunakan Arsitektur EfficientNet-B3 Dan Augmentasi Data,†Jurnal TEKINKOM, vol. 6, no. 1, hlm. 16–25, 2023, doi: 10.37600/tekinkom.v6i1.845.

M. D. Nadarajan, S. Raghava, S. Giri, dan B. Kumar Depuru, “Enhancing Warehouse Operations Through Artificial Intelligence: Pallet Damage Classification with Deep Learning Insights,†Int J Innov Sci Res Technol, vol. 8, no. 11, hlm. 2556–2563, 2023, doi: 10.5281/zenodo.10391024.

R. Adam, “Image Classification Dengan Cnn Dan Tensorflow.†Diakses: 8 Februari 2024. [Daring]. Tersedia pada: https://structilmy.com/blog/2021/01/18/image-classification-dengan-cnn-dan-tensorflow/

A. A. Asiri dkk., “Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images,†Computers, Materials and Continua, vol. 73, no. 3, hlm. 5735–5753, 2022, doi: 10.32604/cmc.2022.031747.

O. A. Shawky, A. Hagag, E. S. A. El-Dahshan, dan M. A. Ismail, “Remote sensing image scene classification using CNN-MLP with data augmentation,†Optik (Stuttg), vol. 221, Nov 2020, doi: 10.1016/j.ijleo.2020.165356.

A. M. Saleh dan T. Hamoud, “Analysis And Best Parameters Selection For Person Recognition Based On Gait Model Using CNN Algorithm And Image Augmentation,†J Big Data, vol. 8, no. 1, Des 2021, doi: 10.1186/s40537-020-00387-6.

Y. Tian, “Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm,†IEEE Access, vol. 8, hlm. 125731–125744, 2020, doi: 10.1109/ACCESS.2020.3006097.

G. Y. Christiawan, R. A. Putra, A. Sulaiman, E. Poerbaningtyas, dan S. W. Putri Listio, “Penerapan Metode Convolutional Neural Network (CNN) Dalam Mengklasifikasikan Penyakit Daun Tanaman Padi,†J-INTECH, vol. 11, no. 2, hlm. 294–306, Des 2023, doi: 10.32664/j-intech.v11i2.1006.

A. Peryanto, A. Yudhana, dan D. R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,†Format : Jurnal Ilmiah Teknik Informatika, vol. 8, no. 2, hlm. 138–147, 2019, doi: 10.22441/format.2019.v8.i2.007.

S. Dahiya, T. Gulati, dan D. Gupta, “Performance Analysis Of Deep Learning Architectures For Plant Leaves Disease Detection,†Measurement: Sensors, vol. 24, Des 2022, doi: 10.1016/j.measen.2022.100581.

D. Cindy Agustin, M. Alfan Rosid, dan N. Ariyanti, “Implementasi Convolutional Neural Network Untuk Deteksi Kesegaran Pada Apel,†Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer), vol. 13, no. 2, hlm. 145–150, 2023, doi: 10.37859/jf.v13i02.5175.

A. S. Paymode dan V. B. Malode, “Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG,†Artificial Intelligence in Agriculture, vol. 6, hlm. 23–33, Jan 2022, doi: 10.1016/j.aiia.2021.12.002.

M. Rafly Alwanda, R. Putra, K. Ramadhan, dan D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,†Jurnal Algoritme, vol. 1, no. 1, hlm. 45–56, 2020, doi: 10.35957/algoritme.v1i1.434.

K. O. Afebu, Y. Liu, dan E. Papatheou, “Feature-based intelligent models for optimisation of percussive drilling,†Neural Networks, vol. 148, hlm. 266–284, Apr 2022, doi: 10.1016/j.neunet.2022.01.021.

M. Yunus, M. Husni, dan M. M. Mufadhdhal, “Klasifikasi Sentimen Terhadap Badan Penyelenggara Jaminan Sosial (BPJS) Pada Media Sosial Twitter Menggunakan Naive Bayes,†SMATIKA JURNAL, vol. 11, no. 02, hlm. 81–91, Des 2021, doi: 10.32664/smatika.v11i02.577.

E. A. Pranata, S. Subari, dan G. F. Gunawan, “Penerapan Metode Naïve Bayes Untuk Klasifikasi Sms Spam Menggunakan Java Rogramming,†J-INTECH, vol. 7, no. 02, hlm. 104–108, Des 2019, doi: 10.32664/j-intech.v7i02.435.

K. Nugroho dan F. N. Hasan, “Analisis Sentimen Masyarakat Mengenai RUU Perampasan Aset Di Twitter Menggunakan Metode Naïve Bayes,†SMATIKA JURNAL, vol. 13, no. 02, hlm. 273–283, Des 2023, doi: 10.32664/smatika.v13i02.899.

M. Yildirim dan A. Cinar, “Classification of Alzheimer’s disease MRI images with CNN based hybrid method,†Ingenierie des Systemes d’Information, vol. 25, no. 4, hlm. 413–418, Agu 2020, doi: 10.18280/isi.250402.

K. Muhammad, T. Hussain, dan S. W. Baik, “Efficient CNN based summarization of surveillance videos for resource-constrained devices,†Pattern Recognit Lett, vol. 130, hlm. 370–375, Feb 2020, doi: 10.1016/j.patrec.2018.08.003.

KantinIT, “Confusion Matrix: Pengertian, Cara Kerja dan Contoh Soal.†Diakses: 17 Februari 2024. [Daring]. Tersedia pada: https://kantinit.com/kecerdasan-buatan/confusion-matrix-pengertian-cara-kerja-dan-contoh-soal/

Unduhan

Diterbitkan

2024-07-01