Clustering Traffic Violations Using K-Means Algorithm on CCTV Data
DOI:
https://doi.org/10.32664/smatika.v15i02.1739Keywords:
Traffic Violations, CCTV, K-Means Clustering, CRISP-DM, Silhouette Score, Sidoarjo Police StationAbstract
This study aims to cluster traffic violation data recorded by CCTV in the Sidoarjo area using the K-Means Clustering algorithm. The dataset used in this study was obtained from Sidoarjo Police, covering 43,055 traffic violation records in the period January 2023 to July 2024. The CRISP-DM approach is applied to ensure a systematic research flow, starting from problem understanding, data collection, to result evaluation. After the data selection and transformation stage, the dataset was processed into 14,386 data. Clustering was performed to divide violations into three categories based on severity, namely high, medium, and low. Evaluation of cluster quality using Silhouette Score showed the best result with a value of 0.9916 at k=9, indicating optimal cluster formation. The clustering results showed that the highest violation occurred in the category of “not using a seat belt†with 8,710 cases, while the moderate violation involved “not wearing a helmet†with 5,522 cases. This study confirms the effectiveness of the K-Means algorithm in clustering traffic violation data and provides valuable insights for the Sidoarjo Police Traffic Unit in designing more efficient traffic violation reduction programs.
References
[1] R. Manaek, Richardus Eko Indrajit, and Erick Dazki, “Arsitektur Perusahaan Untuk Infrastuktur Telekomunikasi Di Daerah Pedalaman Indonesia,” SATIN - Sains Dan Teknol. Inf., vol. 9, no. 2, pp. 01–11, Dec. 2023, doi: 10.33372/stn.v9i2.1000.
[2] D. Wahyuni and A. Arianto, “PENERAPAN DATA MINING PADA DATA PELANGGARAN LALU LINTAS MENGGUNAKAN METODE K-MEANS CLUSTERING (STUDI KASUS : PENGADILAN NEGERI DUMAI)”.
[3] E. S. Wasih, S. Rahmatullah, and S. Mintoro, “Implementasi Data Mining Pada Data Pelanggaran Lalu Lintas di Lampung Utara Menggunakan Algoritma K-Means (Studi Kasus Kejaksaan Negeri Lampung Utara),” 2022.
[4] A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” J. Artif. Intell. Technol. Inf. JAITI, vol. 1, no. 1, pp. 20–28, Feb. 2023, doi: 10.58602/jaiti.v1i1.22.
[5] D. Sartika and J. Jumadi, “IMPLEMENTASI DATA MINING UNTUK PENGELOMPOKKAN WILAYAH PELANGGARAN LALU LINTAS MENGGUNAKAN METODE K-MEANS PADA POLRES BENGKULU”.
[6] R. Saragih, S. Kom, M. Kom, J. N. Sitompul, and M. Pd, “Analisis Perbandingan Data Mining Mengidentifikasi Pola Keterkaitan Variabel Kecelakaan Lalu Lintas Di Polresta Kota Medan,” Inf. Syst. Dev., vol. 4.
[7] J. Rahmasari, “HALAMAN PERNYATAAN KEASLIAN SKRIPSI”.
[8] I. Budiman, T. Prahasto, and Y. Christyono, “Data Clustering Menggunakan Metodologi CRISP-DM Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma,” J. Sist. Inf. BISNIS, vol. 1, no. 3, pp. 129–134, Jan. 2014, doi: 10.21456/vol1iss3pp129-134.
[9] A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI J. Tek. Inform. Dan Sist. Inf., vol. 8, no. 2, pp. 636–646, Jun. 2021, doi: 10.35957/jatisi.v8i2.962.
[10] M. Y. Nurzaman and B. N. Sari, “Implementasi K-Means Clustering Dalam Pengelompokkan Banyaknya Jumlah Petani Berdasarkan Kecamatan Di Provinsi Jawa Barat,” vol. 10, no. 3, 2023.
[11] A. Pambudi, “PENERAPAN CRISP-DM MENGGUNAKAN MLR K-FOLD PADA DATA SAHAM PT. TELKOM INDONESIA (PERSERO) TBK (TLKM) (STUDI KASUS: BURSA EFEK INDONESIA TAHUN 2015-2022),” J. Data Min. Dan Sist. Inf., vol. 4, no. 1, p. 1, Mar. 2023, doi: 10.33365/jdmsi.v4i1.2462.
[12] I. Fitrianti, A. Voutama, and Y. Umaidah, “Clustering Film Populer Pada Aplikasi Netflix Dengan Menggunakan Algoritma K-Means Dan Metode CRISP- DM,” vol. 4, no. 2.
[13] F. N. Dhewayani, D. Amelia, D. N. Alifah, B. N. Sari, and M. Jajuli, “Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM,” J. Teknol. Dan Inf., vol. 12, no. 1, pp. 64–77, Mar. 2022, doi: 10.34010/jati.v12i1.6674.
[14] M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” J. Appl. Inform. Comput., vol. 5, no. 2, pp. 103–108, Oct. 2021, doi: 10.30871/jaic.v5i2.3200.
[15] A. S. Ritonga and I. Muhandhis, “Clustering Data Tweet E-Commerce Menggunakan Metode K-Means (Studi Kasus Akun Twitter Blibli Indonesia),” SMATIKA J., vol. 12, no. 01, pp. 75–84, Jun. 2022, doi: 10.32664/smatika.v12i01.665.
[16] N. Saniyah, N. Suarna, and W. Prihartono, “CLUSTERING PELANGGARAN LALU LINTAS PADA KENDARAAN BERMOTOR MENGGUNKAN ALGORITMA K-PROTOTYPE (STUDI KASUS: PENGADILAN NEGERI CIREBON),” vol. 8, no. 1, 2024.
[17] F. A. Nisa, A. Susanto, E. R. Pramudya, and U. W. Mulyono, “KLASTERISASI PERKARA PELANGGARAN LALU LINTAS MENGGUNAKAN ALGORITMA K-MEANS DAN DAVIES- BOULDIN INDEX,” 2020.
[18] M. R. Muttaqin, T. I. Hermanto, and M. A. Sunandar, “PENERAPAN K-MEANS CLUSTERING DAN CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING (CRISP-DM) UNTUK MENGELOMPOKAN PENJUALAN KUE,” 2022.
[19] I. F. Anshori and Y. Nuraini, “Pengelompokan Data Kecelakaan Lalu Lintas di Kota Tasikmalaya Menggunakan Algoritma K-Means,” J. Responsif Ris. Sains Dan Inform., vol. 2, no. 1, pp. 118–127, Mar. 2020, doi: 10.51977/jti.v2i1.198.
[20] R. Adha, N. Nurhaliza, and U. Soleha, “Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia,” vol. 18, no. 2, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 SMATIKA JURNAL

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
