An Integrative Conceptual Review of Federated Learning Ontology: Reconceptualizing the Global Model as Distributed Intelligence

Authors

  • Adnan Zulkarnain Malang State University, Indonesia
  • Syaad Patmanthara Malang State University, Indonesia

DOI:

https://doi.org/10.32664/j-intech.v13i02.2153

Keywords:

Federated Learning, Informational Ontology, Ontological Audit, Distributed Intelligence, Responsible AI

Abstract

Federated Learning (FL) is widely recognized as a privacy-preserving architecture, yet the ontological status of the "global model" within this distributed system remains under-theorized. This study challenges the purely technical view by reinterpreting FL as an ontological regime of distributed intelligence, where the model exists as a causally effective informational entity. By synthesizing Informational Realism and Actor-Network Theory into a unified Ontological Mediation Framework (OMF), we argue that the global model acquires reality through continuous mediation among algorithms, local data, and institutional actors. To contextualize this framework, the study examines the Federated Tumor Segmentation (FeTS) Initiative, illustrating how a non-local model exerts tangible causal influence within a real-world medical consortium. Furthermore, the paper proposes two normative instruments, specifically the Ontological Impact Assessment (OIA) and the Ontological Audit Framework (OAF), to translate these philosophical insights into practical governance mechanisms for transparency and accountability. This research contributes to the foundations of Responsible AI by positioning Federated Learning not merely as a computational tool, but as a socio-technical process where existence, knowledge, and ethics are intrinsically linked.

References

[1] E. T. M. Beltrán et al., “Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges,” IEEE Communications Surveys & Tutorials, vol. 25, pp. 2983–3013, 2022, doi: 10.1109/comst.2023.3315746.

[2] J. Wen, Z. Zhang, Y. Lan, Z.-S. Cui, J. Cai, and W. Zhang, “A survey on federated learning: challenges and applications,” International Journal of Machine Learning and Cybernetics, vol. 14, pp. 513–535, 2022, doi: 10.1007/s13042-022-01647-y.

[3] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated learning,” Knowl. Based Syst., vol. 216, p. 106775, 2021, doi: 10.1016/j.knosys.2021.106775.

[4] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani, “A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond,” IEEE Internet Things J, vol. 8, pp. 5476–5497, 2021, doi: 10.1109/jiot.2020.3030072.

[5] Y. Zheng, S. Lai, Y. Liu, X. Yuan, X. Yi, and C. Wang, “Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization,” IEEE Trans Dependable Secure Comput, vol. 20, pp. 988–1001, 2022, doi: 10.1109/tdsc.2022.3146448.

[6] Y. Mao et al., “Communication-Efficient Federated Learning with Adaptive Quantization,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, pp. 1–26, 2022, doi: 10.1145/3510587.

[7] M. Asad, A. Moustafa, and T. Ito, “FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning,” Applied Sciences, p., 2020, doi: 10.3390/app10082864.

[8] Md. P. Uddin, Y. Xiang, M. Hasan, J. Bai, Y. Zhao, and L. Gao, “A Systematic Literature Review of Robust Federated Learning: Issues, Solutions, and Future Research Directions,” ACM Comput Surv, vol. 57, pp. 1–62, 2025, doi: 10.1145/3727643.

[9] L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen, and Q. Li, “SEAR: Secure and Efficient Aggregation for Byzantine-Robust Federated Learning,” IEEE Trans Dependable Secure Comput, vol. 19, pp. 3329–3342, 2022, doi: 10.1109/tdsc.2021.3093711.

[10] B. Liu, N. Lv, Y. Guo, and Y. Li, “Recent Advances on Federated Learning: A Systematic Survey,” Neurocomputing, vol. 597, p. 128019, 2023, doi: 10.48550/arxiv.2301.01299.

[11] M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad, “Reviewing Federated Machine Learning and Its Use in Diseases Prediction,” Sensors (Basel), vol. 23, p., 2023, doi: 10.3390/s23042112.

[12] Z. Wang, H. Xu, J. Liu, Y. Xu, H. Huang, and Y. Zhao, “Accelerating Federated Learning With Cluster Construction and Hierarchical Aggregation,” IEEE Trans Mob Comput, vol. 22, pp. 3805–3822, 2023, doi: 10.1109/tmc.2022.3147792.

[13] M. Ye, X. Fang, B. Du, P. Yuen, and D. Tao, “Heterogeneous Federated Learning: State-of-the-art and Research Challenges,” ACM Comput Surv, vol. 56, pp. 1–44, 2023, doi: 10.1145/3625558.

[14] W. Huang et al., “Federated Learning for Generalization, Robustness, Fairness: A Survey and Benchmark,” IEEE Trans Pattern Anal Mach Intell, vol. 46, pp. 9387–9406, 2023, doi: 10.1109/tpami.2024.3418862.

[15] F. Liu, Z. Zheng, Y. Shi, Y. Tong, and Y. Zhang, “A survey on federated learning: a perspective from multi-party computation,” Front Comput Sci, vol. 18, pp. 1–11, 2023, doi: 10.1007/s11704-023-3282-7.

[16] L. Yuan, L. Sun, P. Yu, and Z. Wang, “Decentralized Federated Learning: A Survey and Perspective,” IEEE Internet Things J, vol. 11, pp. 34617–34638, 2023, doi: 10.1109/jiot.2024.3407584.

[17] B. Yurdem, M. Kuzlu, M. Gullu, F. Catak, and M. Tabassum, “Federated learning: Overview, strategies, applications, tools and future directions,” Heliyon, vol. 10, p., 2024, doi: 10.1016/j.heliyon.2024.e38137.

[18] T. Fan et al., “Ten Challenging Problems in Federated Foundation Models,” IEEE Trans Knowl Data Eng, vol. 37, pp. 4314–4337, 2025, doi: 10.1109/tkde.2025.3555328.

[19] K. Friston, R. Moran, Y. Nagai, T. Taniguchi, H. Gomi, and J. Tenenbaum, “World model learning and inference,” Neural Netw, vol. 144, pp. 573–590, 2021, doi: 10.1016/j.neunet.2021.09.011.

[20] T. Guo, S. Guo, J. Wang, X. Tang, and W. Xu, “PromptFL: Let Federated Participants Cooperatively Learn Prompts Instead of Models – Federated Learning in Age of Foundation Model,” IEEE Trans Mob Comput, vol. 23, pp. 5179–5194, 2022, doi: 10.1109/tmc.2023.3302410.

[21] L. Floridi, “Informational realism,” 2005.

[22] B. Latour, “On actor-network theory,” A few clarifications plus more than a few complications.[acessado 2018 Nov 10]. Disponível em: http://www. bruno-latour. fr/sites/default/files/P-67, vol. 20, 1997.

[23] L. Zhang, T. Zhu, P. Xiong, W. Zhou, and P. Yu, “A Robust Game-Theoretical Federated Learning Framework With Joint Differential Privacy,” IEEE Trans Knowl Data Eng, vol. 35, pp. 3333–3346, 2023, doi: 10.1109/tkde.2021.3140131.

[24] L. Chen et al., “A Credible and Fair Federated Learning Framework Based on Blockchain,” IEEE Transactions on Artificial Intelligence, vol. 6, pp. 301–316, 2025, doi: 10.1109/tai.2024.3355362.

[25] H. Zhang, S. Jiang, and S. Xuan, “Decentralized federated learning based on blockchain: concepts, framework, and challenges,” Comput. Commun., vol. 216, pp. 140–150, 2024, doi: 10.1016/j.comcom.2023.12.042.

[26] H. Chen, H. Wang, Q. Long, D. Jin, and Y. Li, “Advancements in Federated Learning: Models, Methods, and Privacy,” ACM Comput Surv, vol. 57, pp. 1–39, 2023, doi: 10.1145/3664650.

[27] Z. Zhao et al., “Federated Learning With Non-IID Data in Wireless Networks,” IEEE Trans Wirel Commun, vol. 21, pp. 1927–1942, 2021, doi: 10.1109/twc.2021.3108197.

[28] Y. Zhang et al., “A Survey of Trustworthy Federated Learning: Issues, Solutions, and Challenges,” ACM Trans Intell Syst Technol, vol. 15, pp. 1–47, 2024, doi: 10.1145/3678181.

[29] A. Tariq et al., “Trustworthy Federated Learning: A Comprehensive Review, Architecture, Key Challenges, and Future Research Prospects,” IEEE Open Journal of the Communications Society, vol. 5, pp. 4920–4998, 2024, doi: 10.1109/ojcoms.2024.3438264.

[30] B. Wheeler, “How realist is informational structural realism?,” Synthese, vol. 200, p., 2022, doi: 10.1007/s11229-022-03911-8.

[31] A. Smirnov, A. Ponomarev, and A. Agafonov, “Ontology-Based Neuro-Symbolic AI: Effects on Prediction Quality and Explainability,” IEEE Access, vol. 12, pp. 156609–156626, 2024, doi: 10.1109/access.2024.3485185.

[32] B. Schwarz, U. Tsemach, M. Israeli, and E. Nir, “Actor-network theory as a new direction in research on educational dialogues,” Instr Sci, p., 2024, doi: 10.1007/s11251-024-09669-5.

[33] T. Mcintosh, T. Sušnjak, T. Liu, P. Watters, R. Nowrozy, and M. Halgamuge, “From COBIT to ISO 42001: Evaluating Cybersecurity Frameworks for Opportunities, Risks, and Regulatory Compliance in Commercializing Large Language Models,” ArXiv, vol. abs/2402.15770, p., 2024, doi: 10.1016/j.cose.2024.103964.

[34] M. Camilleri, “Artificial intelligence governance: Ethical considerations and implications for social responsibility,” Expert Syst, vol. 41, p., 2023, doi: 10.1111/exsy.13406.

[35] L. Yuan, Z. Wang, and C. Brinton, “Digital Ethics in Federated Learning,” IEEE Internet Comput, vol. 28, pp. 66–74, 2023, doi: 10.1109/mic.2024.3370408.

[36] J. M. La Porte and J. Narbona, “Colloquy with Luciano Floridi on the anthropological effects of the digital revolution,” Church, Communication and Culture, vol. 6, pp. 119–138, 2021, doi: 10.1080/23753234.2021.1885984.

[37] G. E. McQueen and D. Bawden, “Luciano Floridi and contemporary art practice,” J Vis Art Pract, vol. 19, pp. 328–350, 2020, doi: 10.1080/14702029.2020.1823762.

[38] J. Dong, Y. Cong, G. Sun, Y. Zhang, B. Schiele, and D. Dai, “No One Left Behind: Real-World Federated Class-Incremental Learning,” IEEE Trans Pattern Anal Mach Intell, vol. 46, pp. 2054–2070, 2023, doi: 10.1109/tpami.2023.3334213.

[39] F. Piovesan, “Reflections on combining action research and actor-network theory,” Action Research, vol. 20, pp. 363–379, 2020, doi: 10.1177/1476750320919167.

[40] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, and F. Piccialli, “Model aggregation techniques in federated learning: A comprehensive survey,” Future Gener. Comput. Syst., vol. 150, pp. 272–293, 2023, doi: 10.1016/j.future.2023.09.008.

[41] A. Ö. Ağça and J. Buur, “An Actor-Network Theory Instrument for Design Practitioners,” The International Journal of Designed Objects, p., 2023, doi: 10.18848/2325-1379/cgp/v17i02/49-64.

[42] O. Lytvyn and G. Nguyen, “Secure Federated Learning for Multi-Party Network Monitoring,” IEEE Access, vol. 12, pp. 163262–163284, 2024, doi: 10.1109/access.2024.3486810.

[43] J. Colton, “Breaking out, finding and using information: theorising learner identities in assemblages of teaching and learning with technology,” Technology, Pedagogy and Education, vol. 28, pp. 425–434, 2019, doi: 10.1080/1475939x.2019.1640784.

[44] M. C. Moncayo-Riascos and W. Salas-Zapata, “Perspective of the Actor-Network Approach on Studies about Water,” Italian Sociological Review, vol. 9, p. 43, 2019, doi: 10.13136/isr.v9i1.217.

[45] D. Ye, X. Huang, Y. Wu, and R. Yu, “Incentivizing Semisupervised Vehicular Federated Learning: A Multidimensional Contract Approach With Bounded Rationality,” IEEE Internet Things J, vol. 9, pp. 18573–18588, 2022, doi: 10.1109/jiot.2022.3161551.

[46] U. Baid et al., “NIMG-32. THE FEDERATED TUMOR SEGMENTATION (FETS) INITIATIVE: THE FIRST REAL-WORLD LARGE-SCALE DATA-PRIVATE COLLABORATION FOCUSING ON NEURO-ONCOLOGY,” Neuro Oncol, p., 2021, doi: 10.1093/neuonc/noab196.532.

[47] J. Li, T. Yan, and Y. Ding, “Thompson Sampling Policy for Dynamic Participating Client Scenario in Federated Learning,” IEEE Internet Things J, vol. 12, pp. 31183–31202, 2025, doi: 10.1109/jiot.2025.3573796.

[48] A. Venčkauskas, J. Toldinas, N. Morkevičius, E. Serkovas, and M. Krištaponis, “Enhancing the Resilience of a Federated Learning Global Model Using Client Model Benchmark Validation,” Electronics (Basel), p., 2025, doi: 10.3390/electronics14061215.

[49] J. Ding et al., “Understanding World or Predicting Future? A Comprehensive Survey of World Models,” ACM Comput Surv, p., 2024, doi: 10.1145/3746449.

[50] S. Ghanadbashi, Z. Safavifar, F. Taebi, and F. Golpayegani, “Handling uncertainty in self-adaptive systems: an ontology-based reinforcement learning model,” J Reliab Intell Environ, pp. 1–26, 2023, doi: 10.1007/s40860-022-00198-x.

[51] J. Pei, W. Liu, J. Li, L. Wang, and C. Liu, “A Review of Federated Learning Methods in Heterogeneous Scenarios,” IEEE Transactions on Consumer Electronics, vol. 70, pp. 5983–5999, 2024, doi: 10.1109/tce.2024.3385440.

[52] A. Mora, A. Bujari, and P. Bellavista, “Enhancing generalization in Federated Learning with heterogeneous data: A comparative literature review,” Future Gener. Comput. Syst., vol. 157, pp. 1–15, 2024, doi: 10.1016/j.future.2024.03.027.

[53] R. Saha, S. Misra, A. Chakraborty, C. Chatterjee, and P. Deb, “Data-Centric Client Selection for Federated Learning Over Distributed Edge Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, pp. 675–686, 2023, doi: 10.1109/tpds.2022.3217271.

[54] A. J. Chaves, C. Martín, and M. Díaz, “Towards flexible data stream collaboration: Federated Learning in Kafka-ML,” Internet Things, vol. 25, p. 101036, 2024, doi: 10.1016/j.iot.2023.101036.

[55] K. Taraszka, O. Rosolio, I. Moon, Y. Semenov, and A. Gusev, “Abstract 2461: Federated learning enables multi-institution collaboration without sharing Hand E slides,” Cancer Res, p., 2025, doi: 10.1158/1538-7445.am2025-2461.

[56] S. Pati et al., “Privacy preservation for federated learning in health care,” Patterns, vol. 5, p., 2024, doi: 10.1016/j.patter.2024.100974.

[57] D. Sengupta, S. S. Khan, S. Das, and D. De, “FedEL: Federated Education Learning for generating correlations between course outcomes and program outcomes for Internet of Education Things,” Internet Things, vol. 25, p. 101056, 2024, doi: 10.1016/j.iot.2023.101056.

[58] Z. Zhong, J. Wang, Y. Zhang, G. He, X. Zhang, and H. Xiang, “Ontology Design of Distributed Computing System Based on Hierarchical Federated Learning,” 2021 7th International Conference on Big Data and Information Analytics (BigDIA), pp. 166–171, 2021, doi: 10.1109/bigdia53151.2021.9619655.

[59] N. Ghannam and E. Mahareek, “Privacy-Preserving Federated Unlearning with Ontology-Guided Relevance Modeling for Secure Distributed Systems,” Future Internet, p., 2025, doi: 10.3390/fi17080335.

[60] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated learning,” Knowl. Based Syst., vol. 216, p. 106775, 2021, doi: 10.1016/j.knosys.2021.106775.

[61] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani, “A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond,” IEEE Internet Things J, vol. 8, pp. 5476–5497, 2021, doi: 10.1109/jiot.2020.3030072.

[62] P. Li, J. Chen, Y. Fan, B. Wang, W. You, and C. Yang, “Enhancing Privacy and Security in Federated Learning Through Blockchain-based Decentralized Trust Models,” 2025 International Conference on Sensor-Cloud and Edge Computing System (SCECS), pp. 400–404, 2025, doi: 10.1109/scecs65243.2025.11065885.

[63] N. Baracaldo et al., “Towards an Accountable and Reproducible Federated Learning: A FactSheets Approach,” ArXiv, vol. abs/2202.12443, p., 2022, [Online]. Available: https://consensus.app/papers/towards-an-accountable-and-reproducible-federated-baracaldo-anwar/2f4729cc38f65b51988f5fc5e8c6efad/

[64] S. Yang, W. Zheng, M. Xie, and X. Zhang, “Research of Federated Learning Application Methods and Social Responsibility,” IEEE Trans Big Data, vol. 10, pp. 989–1000, 2024, doi: 10.1109/tbdata.2022.3225688.

[65] S. K. Lo et al., “Toward Trustworthy AI: Blockchain-Based Architecture Design for Accountability and Fairness of Federated Learning Systems,” IEEE Internet Things J, vol. 10, pp. 3276–3284, 2023, doi: 10.1109/jiot.2022.3144450.

[66] Q. Ye, A. Amini, and Q. Zhou, “Federated Learning of Generalized Linear Causal Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 46, pp. 6623–6636, 2022, doi: 10.1109/tpami.2024.3381860.

[67] T. Prudhomme et al., “A semantic approach to mapping the Provenance Ontology to Basic Formal Ontology,” Sci Data, vol. 12, p., 2024, doi: 10.1038/s41597-025-04580-1.

[68] K. Yu, C. Rong, H. Wang, F. Cao, and J. Liang, “Federated local causal structure learning,” Sci. China Inf. Sci., vol. 68, p., 2025, doi: 10.1007/s11432-023-4203-6.

[69] K. Moon and K.-V. Pérez-Hämmerle, “Inclusivity via ontological accountability,” Conserv Lett, vol. 15, p., 2022, doi: 10.1111/conl.12888.

[70] Q. Yang et al., “Federated Learning with Privacy-preserving and Model IP-right-protection,” Machine Intelligence Research, vol. 20, pp. 19–37, 2023, doi: 10.1007/s11633-022-1343-2.

[71] M. Jung, I. Song, and K. Lee, “Federated Learning Lifecycle Management for Distributed Medical Artificial Intelligence Applications: A Case Study on Post-Transcatheter Aortic Valve Replacement Complication Prediction Solution,” Applied Sciences, p., 2025, doi: 10.3390/app15010378.

[72] M. Symeonides, D. Trihinas, and F. Nikolaidis, “FedMon: A Federated Learning Monitoring Toolkit,” IoT, p., 2024, doi: 10.3390/iot5020012.

[73] H. Li et al., “Review on security of federated learning and its application in healthcare,” Future Gener. Comput. Syst., vol. 144, pp. 271–290, 2023, doi: 10.1016/j.future.2023.02.021.

[74] J. Curl and X. Xie, “Societal impacts and opportunities of federated learning,” Chin J Sociol, vol. 11, pp. 90–100, 2025, doi: 10.1177/2057150x251314299.

[75] M. Graves, “What Does it Mean to Consider AI a Person?,” Theology and Science, vol. 21, no. 3, pp. 348–353, Jul. 2023, doi: 10.1080/14746700.2023.2230424.

[76] C. Rigotti and E. Fosch-Villaronga, “Fairness, AI & recruitment,” Comput. Law Secur. Rev., vol. 53, p. 105966, 2024, doi: 10.1016/j.clsr.2024.105966.

[77] M. Dokumacı, “Legal Frameworks for AI Regulations,” Human Computer Interaction, p., 2024, doi: 10.62802/ytst2927.

[78] S. P. Sebastiao and D. F.-M. Dias, “AI Transparency: A Conceptual, Normative, and Practical Frame Analysis,” Media Commun, p., 2025, doi: 10.17645/mac.9419.

[79] G. Makauskaite-Samuole, “Transparency in the Labyrinths of the EU AI Act: Smart or Disbalanced?,” Access to Justice in Eastern Europe, p., 2025, doi: 10.33327/ajee-18-8.2-a000105.

[80] M. Gamito and C. Marsden, “Artificial intelligence co-regulation? The role of standards in the EU AI Act,” Int. J. Law Inf. Technol., vol. 32, p., 2024, doi: 10.1093/ijlit/eaae011.

[81] F. A.-H. Al-Shawabkeh and K. Al-Jasmi, “Artificial Intelligence and Transparency Management in the Public Sector: A Comparative Legal Study on Accountability and Oversight in European and American Laws,” Journal of Posthumanism, p., 2025, doi: 10.63332/joph.v5i5.1619.

[82] R. Celsi and A. Zomaya, “Perspectives on Managing AI Ethics in the Digital Age,” Information, p., 2025, doi: 10.3390/info16040318.

[83] M. M. Cantallops, S. Sánchez-Alonso, E. García-Barriocanal, and M. Sicilia, “Traceability for Trustworthy AI: A Review of Models and Tools,” Big Data Cogn. Comput., vol. 5, p. 20, 2021, doi: 10.3390/bdcc5020020.

[84] T. Namli et al., “A scalable and transparent data pipeline for AI-enabled health data ecosystems,” Front Med (Lausanne), vol. 11, p., 2024, doi: 10.3389/fmed.2024.1393123.

[85] A. Battah, M. Madine, I. Yaqoob, K. Salah, H. Hasan, and R. Jayaraman, “Blockchain and NFTs for Trusted Ownership, Trading, and Access of AI Models,” IEEE Access, vol. 10, pp. 112230–112249, 2022, doi: 10.1109/access.2022.3215660.

[86] K. Elfer et al., “Reproducible Reporting of the Collection and Evaluation of Annotations for Artificial Intelligence Models.,” Mod Pathol, p. 100439, 2024, doi: 10.1016/j.modpat.2024.100439.

[87] Y. Balagurunathan, R. Mitchell, and I. El Naqa, “Requirements and reliability of AI in the medical context.,” Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics, vol. 83, pp. 72–78, 2021, doi: 10.1016/j.ejmp.2021.02.024.

[88] P. Bhawsar et al., “Browser-based Data Annotation, Active Learning, and Real-Time Distribution of Artificial Intelligence Models: From Tumor Tissue Microarrays to COVID-19 Radiology,” J Pathol Inform, vol. 12, p., 2021, doi: 10.4103/jpi.jpi_100_20.

[89] T. Zhi-Xuan, M. Carroll, M. Franklin, and H. Ashton, “Beyond Preferences in AI Alignment,” ArXiv, vol. abs/2408.16984, p., 2024, doi: 10.1007/s11098-024-02249-w.

[90] D. Preuveneers and W. Joosen, “An Ontology-Based Cybersecurity Framework for AI-Enabled Systems and Applications,” Future Internet, vol. 16, p. 69, 2024, doi: 10.3390/fi16030069.

[91] G. Falco et al., “Governing AI safety through independent audits,” Nat Mach Intell, vol. 3, pp. 566–571, 2021, doi: 10.1038/s42256-021-00370-7.

[92] L. Waltersdorfer and M. Sabou, “Leveraging Knowledge Graphs for AI System Auditing and Transparency,” J. Web Semant., vol. 84, p. 100849, 2024, doi: 10.1016/j.websem.2024.100849.

[93] F. Almaqtari, “The Role of IT Governance in the Integration of AI in Accounting and Auditing Operations,” Economies, p., 2024, doi: 10.3390/economies12080199.

[94] J. Schuett, “Frontier AI developers need an internal audit function.,” Risk Anal, p., 2023, doi: 10.1111/risa.17665.

[95] C. Pan, “Rethinking challenges of a holographic world: Towards a quantum ontology for global governance,” The British Journal of Politics and International Relations, vol. 27, pp. 529–541, 2024, doi: 10.1177/13691481241284225.

[96] M. Houghtaling et al., “Standardizing an Ontology for Ethically Aligned Robotic and Autonomous Systems,” IEEE Trans Syst Man Cybern Syst, vol. 54, pp. 1791–1804, 2024, doi: 10.1109/tsmc.2023.3330981.

[97] M. Ashok, R. Madan, A. Joha, and U. Sivarajah, “Ethical framework for Artificial Intelligence and Digital technologies,” Int. J. Inf. Manag., vol. 62, p. 102433, 2022, doi: 10.1016/j.ijinfomgt.2021.102433.

[98] N. Smith and D. Vickers, “Statistically responsible artificial intelligences,” Ethics Inf Technol, vol. 23, pp. 483–493, 2021, doi: 10.1007/s10676-021-09591-1.

[99] G. Guizzardi and N. Guarino, “Explanation, semantics, and ontology,” Data Knowl. Eng., vol. 153, p. 102325, 2024, doi: 10.1016/j.datak.2024.102325.

[100] J. Zhang, Z. Jiang, J.-J. Dong, Y. Hou, and B. Liu, “Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation,” IEEE Access, vol. 8, pp. 58533–58545, 2020, doi: 10.1109/access.2020.2983075.

[101] M. Manthe, S. Duffner, and C. Lartizien, “Whole-brain radiomics for clustered federated personalization in brain tumor segmentation,” pp. 957–977, 2023, doi: 10.48550/arxiv.2310.11480.

[102] S. R. Pokhrel, “Learning from data streams for automation and orchestration of 6G industrial IoT: toward a semantic communication framework,” Neural Comput Appl, vol. 34, pp. 15197–15206, 2022, doi: 10.1007/s00521-022-07065-z.

[103] J. Han, W. Ni, and L. Li, “Semi-Federated Learning for Connected Intelligence With Computing-Heterogeneous Devices,” IEEE Internet Things J, vol. 11, pp. 34078–34092, 2024, doi: 10.1109/jiot.2024.3355160.

[104] T. Wu, Y. Qu, C. Liu, H. Dai, C. Dong, and J. Cao, “Cost-Efficient Federated Learning for Edge Intelligence in Multi-Cell Networks,” IEEE/ACM Transactions on Networking, vol. 32, pp. 4472–4487, 2024, doi: 10.1109/tnet.2024.3423316.

[105] Y.-H. Chiang, K. Terai, T.-W. Chiang, H. Lin, Y. Ji, and J. C. S. Lui, “Optimal Transport-Based One-Shot Federated Learning for Artificial Intelligence of Things,” IEEE Internet Things J, vol. 11, pp. 2166–2180, 2024, doi: 10.1109/jiot.2023.3293230.

[106] X. Zeng et al., “Homophily Learning-Based Federated Intelligence: A Case Study on Industrial IoT Equipment Failure Prediction,” IEEE Internet Things J, vol. 10, pp. 7356–7365, 2023, doi: 10.1109/jiot.2022.3228792.

[107] C. Sandeepa, E. Zeydan, T. Samarasinghe, and M. Liyanage, “Federated Learning for 6G Networks: Navigating Privacy Benefits and Challenges,” IEEE Open Journal of the Communications Society, vol. 6, pp. 90–129, 2025, doi: 10.1109/ojcoms.2024.3513832.

[108] L. Witt et al., “Decentralized and Incentivized Federated Learning: A Blockchain-Enabled Framework Utilising Compressed Soft-Labels and Peer Consistency,” IEEE Trans Serv Comput, vol. 17, pp. 1449–1464, 2024, doi: 10.1109/tsc.2023.3336980.

[109] H. Gao, M. Thai, and J. Wu, “When Decentralized Optimization Meets Federated Learning,” IEEE Netw, vol. 37, pp. 233–239, 2023, doi: 10.1109/mnet.132.2200530.

[110] G. Keshavarzkalhori, C. Pérez-Solá, G. Navarro-Arribas, J. Herrera-Joancomartí, and H. Yajam, “Federify: A Verifiable Federated Learning Scheme Based on zkSNARKs and Blockchain,” IEEE Access, vol. 12, pp. 3240–3255, 2024, doi: 10.1109/access.2023.3347039.

[111] X. Yang, H. Yu, X. Gao, H. Wang, J. Zhang, and T. Li, “Federated Continual Learning via Knowledge Fusion: A Survey,” IEEE Trans Knowl Data Eng, vol. 36, pp. 3832–3850, 2023, doi: 10.1109/tkde.2024.3363240.

[112] Z. Zhou, F. Sun, X. Chen, D. Zhang, T. Han, and P. Lan, “A Decentralized Federated Learning Based on Node Selection and Knowledge Distillation,” Mathematics, p., 2023, doi: 10.3390/math11143162.

[113] G. Yu et al., “IronForge: An Open, Secure, Fair, Decentralized Federated Learning,” IEEE Trans Neural Netw Learn Syst, vol. 36, pp. 354–368, 2023, doi: 10.1109/tnnls.2023.3329249.

[114] C. Li, G. Li, and P. Varshney, “Decentralized Federated Learning via Mutual Knowledge Transfer,” IEEE Internet Things J, vol. 9, pp. 1136–1147, 2020, doi: 10.1109/jiot.2021.3078543.

[115] H. Chen, T. Zhu, T. Zhang, W. Zhou, and P. Yu, “Privacy and Fairness in Federated Learning: On the Perspective of Tradeoff,” ACM Comput Surv, vol. 56, pp. 1–37, 2023, doi: 10.1145/3606017.

[116] E. Moore, A. Imteaj, S. Rezapour, S. H. Amini, M. Amini, and F. A. Imteaj, “A Survey on Secure and Private Federated Learning Using Blockchain: Theory and Application in Resource-Constrained Computing,” IEEE Internet Things J, vol. 10, pp. 21942–21958, 2023, doi: 10.1109/jiot.2023.3313055.

[117] S. Ko, K. Lee, H. Cho, Y. Hwang, and H. Jang, “Asynchronous federated learning with directed acyclic graph-based blockchain in edge computing: Overview, design, and challenges,” Expert Syst. Appl., vol. 223, p. 119896, 2023, doi: 10.1016/j.eswa.2023.119896.

[118] A. Rahman et al., “Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues,” Cluster Comput, pp. 1–41, 2022, doi: 10.1007/s10586-022-03658-4.

[119] J. L. C. Bárcena et al., “Enabling federated learning of explainable AI models within beyond-5G/6G networks,” Comput. Commun., vol. 210, pp. 356–375, 2023, doi: 10.1016/j.comcom.2023.07.039.

[120] C. Prigent, A. Costan, G. Antoniu, and L. Cudennec, “Enabling federated learning across the computing continuum: Systems, challenges and future directions,” Future Gener. Comput. Syst., vol. 160, pp. 767–783, 2024, doi: 10.1016/j.future.2024.06.043.

[121] A. Qammar, A. Karim, H. Ning, and J. Ding, “Securing federated learning with blockchain: a systematic literature review,” Artif Intell Rev, vol. 56, pp. 3951–3985, 2022, doi: 10.1007/s10462-022-10271-9.

Downloads

Published

2025-12-19