VibeScreen: A Mood-Based Movie and Music Recommendation Mobile Application

Penulis

  • Melky Sinun Usen Universitas Teknologi Yogyakarta
  • Sulistyo Dwi Sancoko Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.32664/j-intech.v13i02.2137

Kata Kunci:

Recommendation system, Mood, Flutter, Firebase, Sentiment Analysis, Flask

Abstrak

The advancement of digital technology has driven the emergence of various innovations in delivering personalized entertainment content. One promising approach is a mood-based recommendation system, which enables users to receive suggestions for movies or music that match their emotional state. This study designed and developed VibeScreen, a prototype application for recommending movies and music based on user mood using sentiment analysis of text inputs. The system applies Natural Language Processing (NLP) techniques to classify user sentiment, which is then used to generate relevant entertainment recommendations. The application was developed using Flutter for the mobile interface and Flask for the backend services, with Firebase supporting user authentication and data storage. The dataset was collected through online questionnaires and secondary sources such as IMDb and Spotify. Testing results show that the system can provide mood-relevant recommendations with an interactive and responsive interface. This research contributes by integrating movies and music recommendations in a single platform, offering a more adaptive and emotionally relevant entertainment experience.

Referensi

[1] F. Ricci, L. Rokach, and B. Shapira, “Recommender Systems Handbook,” in Recommender Systems Handbook, vol. 1–35, 2010, pp. 1–35. doi: 10.1007/978-0-387-85820-3_1.

[2] D. N. Greenwood and C. R. Long, “Mood specific media use and emotion regulation: Patterns and individual differences,” Pers Individ Dif, vol. 46, no. 5–6, pp. 616–621, Apr. 2009, doi: 10.1016/j.paid.2009.01.002.

[3] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions,” IEEE Trans Knowl Data Eng, vol. 17, no. 6, pp. 734–749, 2005, doi: 10.1109/TKDE.2005.99.

[4] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, “A review of affective computing: From unimodal analysis to multimodal fusion,” Information Fusion, vol. 37, pp. 98–125, 2017, doi: https://doi.org/10.1016/j.inffus.2017.02.003.

[5] D. Dwi Saputra, R. Fahlapi, A. Yadi Kuntoro, and T. Asra, “Analisis Sentimen Terhadap Twitter Direktorat Jenderal Bea dan Cukai Menggunakan komparasi Algoritma Naïve Bayes dan Support Vector Machine”.

[6] T. Babu, R. R. Nair, and G. A, “Emotion-Aware Music Recommendation System: Enhancing User Experience Through Real-Time Emotional Context,” Nov. 2023, [Online]. Available: http://arxiv.org/abs/2311.10796

[7] A. C. Saputra et al., “PREDIKSI EMOSI DALAM TEKS BAHASA INDONESIA MENGGUNAKAN MODEL INDOBERT,” 2025, doi: 10.47111/JTI.

[8] A. Nafi’, A. Tri, J. Harjanta, B. A. Herlambang, and S. Fahmi, “J-INTECH (Journal of Information and Technology) Analisis Sentimen Review Pelanggan Lazada dengan Sastrawi Stemmer dan SVM-PSO untuk Memahami Respon Pengguna,” 2024.

[9] K. Pradhisa and R. Fajriyah, “Analisis Sentimen Ulasan Pengguna E-commerce di Google Play Store Menggunakan Metode IndoBERT,” Building of Informatics, Technology and Science (BITS), vol. 6, Jun. 2024, doi: 10.47065/bits.v6i1.5247.

[10] T. Hasan and R. Bunescu, “A Survey of Affective Recommender Systems: Modeling Attitudes, Emotions, and Moods for Personalization,” 2018. doi: XXXXXXX.XXXXXXX.

[11] T. Y. Kim, H. Ko, S. H. Kim, and H. Da Kim, “Modeling of recommendation system based on emotional information and collaborative filtering,” Sensors, vol. 21, no. 6, pp. 1–25, Mar. 2021, doi: 10.3390/s21061997.

[12] H. Jayadianti, W. Kaswidjanti, A. Utomo, S. Saifullah, F. Dwiyanto, and R. Drezewski, “Sentiment analysis of Indonesian reviews using fine- tuning IndoBERT and R-CNN,” ILKOM Jurnal Ilmiah, vol. 14, pp. 348–354, Dec. 2022, doi: 10.33096/ilkom.v14i3.1505.348-354.

[13] P. Pichappan, “A Review of the Emotion-Induced Music Recommendation Systems,” Journal of Digital Information Management, vol. 23, no. 2, pp. 112–133, Jun. 2025, doi: 10.6025/jdim/2025/23/2/112-133.

[14] A. Karve, A. Humnabadkar, B. Shivbhakta, and M. Naik, “Advancements and Challenges in Mood Prediction and Recommendation Systems: A Comprehensive Review,” INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, vol. 08, pp. 1–6, Sep. 2024, doi: 10.55041/IJSREM37401.

[15] F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” Online, 2020. [Online]. Available: https://huggingface.co/

[16] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” 2019. [Online]. Available: https://github.com/tensorflow/tensor2tensor

[17] Y. Koren, “Factorization meets the neighborhood: A multifaceted collaborative filtering model,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–434. doi: 10.1145/1401890.1401944.

[18] X. Su and T. M. Khoshgoftaar, “A Survey of Collaborative Filtering Techniques,” Advances in Artificial Intelligence, vol. 2009, no. 1, p. 421425, Jan. 2009, doi: https://doi.org/10.1155/2009/421425.

[19] N. Osman, “Contextual Sentiment Based Recommender System to Provide Recommendation in the Electronic Products Domain,” Int J Mach Learn Comput, vol. 9, Jul. 2020, doi: 10.18178/ijmlc.2019.9.4.821.

[20] Y. Liu, M. Khan, M. Ashraf, . O., W. Sharif, and J. Ahmad, “Customer’s decision and affective assessment of online product recommendation: A recommendation-product congruity proposition,” Front Psychol, vol. 13, Sep. 2022, doi: 10.3389/fpsyg.2022.916520.

Diterbitkan

2025-12-19