Application of the K-Nearest Neighbor (K-NN) Algorithm for Detecting Banana Harvest Feasibility

Penulis

  • Citra Citra Medan State University, Indonesia
  • Arnah Ritonga Medan State University, Indonesia
  • Arnita Arnita Medan State University, Indonesia
  • Said Iskandar Al Idrus Medan State University, Indonesia
  • Debi Yandra Niska Medan State University, Indonesia

DOI:

https://doi.org/10.32664/j-intech.v13i02.2064

Kata Kunci:

GLCM, Harvest SUitability, HSV, K-Nearest Neighbor, Web Based System

Abstrak

This study focuses on detecting banana harvest feasibility at the green-ripe stage, an area often overlooked in previous studies that focus only on general ripeness. The objective of this research was to develop a system based on the K-Nearest Neighbor (K-NN) algorithm to classify bananas as “Ready for Harvest” or “Not Ready for Harvest” using digital image processing. The system utilizes Hue Saturation Value (HSV) for color analysis and Gray Level Co-occurrence Matrix (GLCM) for texture identification. Unlike other methods, the combination of HSV and GLCM provides richer, complementary features, improving classification accuracy. The study was conducted at a banana plantation in Kwala Bekala Village, Medan Johor District, with 200 banana images taken from five different locations. The K-NN algorithm, with a value of K = 3, was chosen to avoid tie votes and ensure computational efficiency. The system achieved an accuracy of 94%, with precision of 93.5%, recall of 92.8%, and an F1-score of 93%. In beta testing with 33 respondents (18 farmers and 15 non-farmers), the system achieved a user satisfaction rate of 90%. Misclassifications occurred due to factors such as lighting variations and background noise. The study demonstrates the practical benefit of using the K-NN algorithm for determining the optimal harvest time, helping farmers make more accurate decisions, reducing waste, and increasing market competitiveness. This research fills the gap in detecting green-ripe bananas, providing an innovative solution to optimize harvest timing in the agricultural industry.

Referensi

[1] S. Yasmin and M. Billah, “Digital image processing applications in agriculture with a machine learning approach,” Agric. Sci. Technol., vol. 15, no. 4, pp. 12–22, Dec. 2023.

[2] BPS, “Statistik Hortikultura,” p. 32, 2023.

[3] S. P. Adenugraha, V. Arinal, and D. I. Mulyana, “Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN dan PCA Berdasarkan Citra RGB dan HSV,” J. Media Inform. Budidarma, vol. 6, no. 1, pp. 9–17, Jan. 2022.

[4] Rifki Kosasih, “Classification of Banana Ripe Level Based on Texture Features and KNN Algorithms,” J. Nas. Tek. Elektro dan Teknol. Inf, vol. 10, no. 4, pp. 383–388, Nov. 2021.

[5] W. Shinta Sari and C. Atika Sari, “Klasifikasi Bunga Mawar Menggunakan KNN dan Ekstraksi Fitur GLCM dan HSV,” SKANIKA Sist. Komput. dan Tek. Inform., vol. 5, no. 2, pp. 145–156, 2022.

[6] Lia Kamelia, Mufid Ridlo Effendi, and Nisa Hafidzatul Adila, “Ripeness Level Classification of Banana Fruit Based on Hue Saturate Value (HSV) Color Space Using K-Nearest Neighbor Algorithm,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 2, pp. 941–947, Apr. 2021.

[7] Mutmainnah Muchtar and R. A. Muchtar, “Perbandingan Metode Knn Dan Svm Dalam Klasifikasi Kematangan Buah Mangga Berdasarkan Citra Hsv Dan Fitur Statistik,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 876–884, Apr. 2024.

[8] D. Surya Prabha and J. Satheesh Kumar, “Assessment of banana fruit maturity by image processing technique,” J. Food Sci. Technol., vol. 52, no. 3, pp. 1316–1327, 2015.

[9] S. Maduwanthi and R. Marapana, “Biochemical changes during ripening of banana: A review,” Int. J. Food Sci. Nutr., vol. 2, no. 5, pp. 166–169, Sep. 2017.

[10] S. Irianto, “Pengolahan Citra Digital,” Bandar Lampung, 2014.

[11] Sumijan and Pradani Ayu Widya Purnama, Teori dan Aplikasi Pengolahan Citra Digital Penerapan dalam Bidang Citra Medis, Cetakan pe. CV Insan Cendekia Mandiri, 2021.

[12] F. P. Rhesal Mahadyanto, Diah Arifah Prastiningtyas, “Penerapan Metode Jaringan Syaraf Tiruan Radial Basis Function untuk Identifikasi Jenis Mangga Berdasarkan Pola Daun,” J-INTECH, vol. 07, no. 1, pp. 90–96, 2019.

[13] G. P. A. Saputra, “Analysis of Coffee Bean Roasting Maturity Levels Using Color Feature Extraction,” J-INTECH, vol. 12, no. 1, pp. 123–128, 2024.

[14] V. Chernov, J. Alander, and V. Bochko, “Integer-based accurate conversion between RGB and HSV color spaces,” Comput. Electr. Eng., vol. 46, pp. 328–337, 2015.

[15] P. N. A. T. S. Muljono, Pengolahan Citra Digital. Yogyakarta : ANDI, 2017.

[16] Rahmaddeni, Denok Wulandari, Masni Renova, Gilang Ramadhan, and Retno Sari, Machine Learning. 2024.

[17] Danny Erry Trihandika, “Sistem Pengelolaan Informasi Pertanian Menggunakan Metode Case Based Reasoning pada Gapoktan Sidomakmur,” J-INTECH, vol. 4, no. 1, pp. 66–70, 2017.

[18] Arnita, Faridawaty Marpaung, Fitrahuda Aulia, Nita Suryani, and Rinjani Cyra Nabila, Computer Vision Dan Pengolahan Citra Digital, Edisi Pert. Pustaka Aksara, 2022.

[19] E. S. K. D. H. Y. N. I. Sembiring, “Enhanced Banana Ripeness Detection using GLCM and K-NN Methods,” 2024 3rd Int. Conf. Creat. Commun. Innov. Technol., pp. 1–7, 2024.

[20] M. K. Yosua Kristanto, Diah Arifah Prastiningtyas, “Penerapan Algoritma Nearest Neighbor untuk Menentukan Rekomendasi Solusi Terhadap Layanan Kantor Teknologi Informasi STIKI Malang,” J-INTECH, vol. 7, no. 1, pp. 72–79, 2019.

Diterbitkan

2025-12-19