Analisis Sentimen Review Pelanggan Lazada dengan Sastrawi Stemmer dan SVM-PSO untuk Memahami Respon Pengguna

Penulis

  • Abdun Nafi' Informatika, Universitas PGRI Semarang, Indonesia
  • Aris Trijaka Harjanta Informatika, Universitas PGRI Semarang, Indonesia
  • Bambang Agus Herlambang Informatika, Universitas PGRI Semarang, Indonesia
  • Saeful Fahmi Informatika, Universitas PGRI Semarang, Indonesia

DOI:

https://doi.org/10.32664/j-intech.v12i02.1450

Kata Kunci:

analisis sentiment, sastrawi stemmer, SVM-PSO

Abstrak

Di era digital, analisis sentimen memainkan peran strategis dalam memahami persepsi pelanggan terhadap produk dan layanan. Penelitian ini bertujuan untuk menganalisis sentimen ulasan pelanggan pada platform Lazada melalui penerapan teknik pemrosesan teks dan algoritma machine learning. Data diambil dari ulasan produk pada platform tersebut, yang kemudian melalui tahap praproses, meliputi tokenisasi, penghapusan stopword, dan stemming menggunakan algoritma Sastrawi. Selanjutnya, klasifikasi sentimen dilakukan dengan menggunakan Support Vector Machine yang dioptimalkan melalui metode Particle Swarm Optimization (PSO). Hasil penelitian menunjukkan bahwa kombinasi metode Sastrawi stemmer dan SVM-PSO mampu mencapai akurasi yang signifikan, yaitu sebesar 90,57%, mengalami peningkatan sebesar 6,24% dibandingkan penelitian sebelumnya. Temuan ini memberikan wawasan yang mendalam mengenai persepsi pelanggan, serta menawarkan panduan berharga bagi pengambil keputusan di Lazada dalam meningkatkan kualitas layanan dan kepuasan pelanggan. Studi ini juga menggarisbawahi pentingnya penerapan teknik Natural Language Processing dan algoritma machine learning dalam analisis sentimen pada platform e-commerce, yang terbukti mampu menghasilkan keluaran yang lebih akurat.

Referensi

Analysis and Topic Modelling Using the LDA Method related to the Flood Disaster in Jakarta on Twitter. 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 126–130. https://doi.org/10.1109/ICIMCIS51567.2020.9354320

Cruz, J. C. Dela, & Amado, T. M. (2020). Development of Machine Learning-based Predictive Models for Wireless Indoor Localization Application with Feature Ranking via Recursive Feature Elimination Algorithm. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1–6. https://doi.org/10.1109/ICSPCC50002.2020.9259526

Djatmiko, F., Ferdiana, R., & Faris, M. (2019). A Review of Sentiment Analysis for Non-English Language. 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 448–451. https://doi.org/10.1109/ICAIIT.2019.8834552

Fahmi, S., Purnamawati, L., Shidik, G. F., Muljono, M., & Fanani, A. Z. (2020). Sentiment Analysis of Student Review in Learning Management System Based on Sastrawi Stemmer and SVM-PSO. 2020 International Seminar on Application for Technology of Information and Communication (ISemantic), 643–648. https://doi.org/10.1109/iSemantic50169.2020.9234291

Hassan, R., & Islam, Md. R. (2021). Impact of Sentiment Analysis in Fake Online Review Detection. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), 21–24. https://doi.org/10.1109/ICICT4SD50815.2021.9396899

Hermanto, H., Fahlapi, R., Kuntoro, A. Y., & Asra, T. (2024). Perbandingan Algoritma Klasifikasi Analisis Sentimen Pengguna Aplikasi Getcontact Dalam Pencegahan Penipuan Online. J-INTECH, 12(1), 158–167. https://doi.org/10.32664/j-intech.v12i1.1262

Huan, L., Jingqi, M., & Xingjian, L. (2020). Target tracking method based on the fusion of structured SVM and KCF algorithm. 2020 Chinese Control And Decision Conference (CCDC), 1174–1178. https://doi.org/10.1109/CCDC49329.2020.9164843

LADJAL, M., OUALI, M. A., & LASS, M. D. (2020). optimization of SVM parameters with hybrid PCA-PSO methods for water quality monitoring. 2020 International Conference on Electrical Engineering (ICEE), 1–6. https://doi.org/10.1109/ICEE49691.2020.9249881

Li, J., Zhao, Y., Gao, X., & Zhao, W. (2020). Feature Extraction and SVM Parameters Optimization Based on ICQPSO. 2020 International Conference on Computer Network, Electronic and Automation (ICCNEA), 329–332. https://doi.org/10.1109/ICCNEA50255.2020.00074

Liu, J., Zhu, X., & Zhang, Y. (2020). Application of DE-GWO-SVM Algorithm in Business Order Prediction Model. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), 432–435. https://doi.org/10.1109/ICSESS49938.2020.9237714

Liu, L., Sha, Y., & Zhang, Q. (2020). Bearing fault diagnosis analysis based on improved adaptive search algorithms and SVMs. 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), 680–684. https://doi.org/10.1109/CACRE50138.2020.9230327

Mustopa, A., Hermanto, Anna, Pratama, E. B., Hendini, A., & Risdiansyah, D. (2020). Analysis of User Reviews for the PeduliLindungi Application on Google Play Using the Support Vector Machine and Naive Bayes Algorithm Based on Particle Swarm Optimization. 2020 Fifth International Conference on Informatics and Computing (ICIC), 1–7. https://doi.org/10.1109/ICIC50835.2020.9288655

Phan, H. T., Tran, V. C., Nguyen, N. T., & Hwang, D. (2020). Improving the Performance of Sentiment Analysis of Tweets Containing Fuzzy Sentiment Using the Feature Ensemble Model. IEEE Access, 8, 14630–14641. https://doi.org/10.1109/ACCESS.2019.2963702

Pramita, A. G., & Nugraha, F. (2024). Sistem Analisis Sentimen Produk Pada Aplikasi Lazada Menggunakan Metode Naïve Bayes. Jurnal Digit, 14(1), 23. https://doi.org/10.51920/jd.v14i1.362

Punitha, S., & Jeyakarthic, M. (2020). Particle Swarm Optimization based Classification Algorithm for Expert Prediction Systems. 2020 International Conference on Inventive Computation Technologies (ICICT), 671–675. https://doi.org/10.1109/ICICT48043.2020.9112392

Riyanto, V. A., & Santoso, D. B. (2024). Penerapan Model Support Vector Machine Pada Klasifikasi Sentimen Ulasan Aplikasi Lazada. JURASIK (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 9(1).

Rusyanti, D., & Sembiring, F. (2022). Implementasi Algoritma K Means Untuk Sentimen Analisis Review Produk Pada E-Commerce Lazada. SEMINAR NASIONAL SISTEM INFORMASI & MANAJEMEN INFORMATIKA (SISMATIK 2024), 2.

Saputra, F. T., Wijaya, S. H., Nurhadryani, Y., & Defina. (2020). Lexicon Addition Effect on Lexicon-Based of Indonesian Sentiment Analysis on Twitter. 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 136–141. https://doi.org/10.1109/ICIMCIS51567.2020.9354269

Shuran, C., & Yian, L. (2020). Breast cancer diagnosis and prediction model based on improved PSO-SVM based on gray relational analysis. 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), 231–234. https://doi.org/10.1109/DCABES50732.2020.00067

Yadav, S., & Saleena, N. (2020). Sentiment Analysis Of Reviews Using an Augmented Dictionary Approach. 2020 5th International Conference on Computing, Communication and Security (ICCCS), 1–5. https://doi.org/10.1109/ICCCS49678.2020.9277094

Zhang, X., Han, P., Xu, L., Zhang, F., Wang, Y., & Gao, L. (2020). Research on Bearing Fault Diagnosis of Wind Turbine Gearbox Based on 1DCNN-PSO-SVM. IEEE Access, 8, 192248–192258. https://doi.org/10.1109/ACCESS.2020.3032719

Unduhan

Diterbitkan

2024-12-19