Identification of Palm Oil Fresh Fruit Bunches Worth Selling with K-Nearest Neighbors Algorithm
DOI:
https://doi.org/10.32664/j-intech.v13i02.2066Keywords:
Classification, Fresh Fruit Bunches, KNN, Merchantability, Oil PalmAbstract
Indonesia is the world's largest palm oil producer, with annual production reaching more than 45 million tons. The quality of oil palm fresh fruit bunches (FFB) determines the quality of the oil produced. The quality of FFBs can be seen through their maturity and health. Fruit that is not ripe, overripe, or contaminated with mold can reduce oil quality due to high levels of free fatty acids (FFA). This research aims to build a classification model of FFB marketability using the K-Nearest Neighbors (K-NN) algorithm with RGB and GLCM features. Image data was collected from the plantation, then processed through the stages of preprocessing, feature extraction, and normalization. The model was tested in three approaches, namely using RGB-GLCM combination features, RGB only, and GLCM only, with various data sharing scenarios, namely 70:30, 80:20, and 90:10, as well as varying k values, namely k = 3, 5, 7, 9. The evaluation results show that the RGB-GLCM feature combination model in the 80:20 data sharing scenario and k = 5 value is the most optimal model, with accuracy reaching 88%. In addition to providing high accuracy, this model also shows good stability compared to the RGB and GLCM models alone. This proves that the use of a combination of features is more effective and reliable in identifying the marketability of oil palm FFB compared to the use of a single feature.
References
[1] S. Yuandry and I. Irdawati, “Analisis Pengaruh Tingkat Free Fatty Acid (FFA) terhadap Kualitas Crude Palm Oil (CPO) pada Pabrik Industri Kelapa Sawit PT. Agro Muko Po. Mill,” Biocelebes, vol. 18, no. 1, pp. 13–19, 2024, doi: 10.22487/bioceb.v18i1.16882.
[2] BPS, “Statistik Kelapa Sawit Indonesia 2022,” vol. 16, p. 6, 2023.
[3] I. Bonet, M. Gongora, F. Acevedo, and I. Ochoa, “Deep Learning Model to Predict the Ripeness of Oil Palm Fruit,” Int. Conf. Agents Artif. Intell., vol. 3, no. Icaart, pp. 1068–1075, 2024, doi: 10.5220/0012434600003636.
[4] M. Rifqi, M. AKbar, and Y. Fitrisia, “Aplikasi Pendeteksian Kematangan Tandan Buah Segar (TBS) Kelapa Sawit Berdasarkan Komposisi Warna Menggunakan Algoritma K-NN,” J. Komput. Terap., vol. 6, no. 1, pp. 99–107, 2020, doi: https://doi.org/10.35143/jkt.v6i1.3338.
[5] J. Zulkarnain, Kusrini, and T. Hidayat, “Klasifikasi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Pendekatan Deep Learning,” JST (Jurnal Sains dan Teknol., vol. 12, no. 3, pp. 748–758, 2024, doi: 10.23887/jstundiksha.v12i3.59140.
[6] D. Nurfiqih, L. Hakim, and M. Muhammad, “Pengaruh Suhu, Persentase Air, Dan Lama Penyimpanan Terhadap Persentase Kenaikan Asam Lemak Bebas (Alb) Pada Crude Palm Oil (Cpo),” J. Teknol. Kim. Unimal, vol. 10, no. 2, p. 1, 2021, doi: 10.29103/jtku.v10i2.4955.
[7] R. Kurniawan, Samsuryadi, F. S. Mohamad, H. O. L. Wijaya, and B. Santoso, “Classification of palm oil fruit ripeness based on AlexNet deep Convolutional Neural Network,” Sinergi (Indonesia), vol. 29, no. 1, pp. 207–220, 2025, doi: 10.22441/sinergi.2025.1.019.
[8] R. Malyala, “Development of a Convolutional Neural Network Model for Automated Ripeness Classification of Palm Oil Fresh Fruit Bunches,” Int. J. Innov. Sci. Res. Technol., vol. 9, no. 11, pp. 1040–1046, 2024, doi: 10.38124/ijisrt/ijisrt24nov762.
[9] M. Rifqi and Suharjito, “Deteksi Kematangan Tandan Buah Segar (Tbs) Kelapa Sawit Berdasarkan Komposisi Warna Menggunakan Deep Learning,” J. Tek. Inform. Atmaluhur, vol. 6, no. 1, p. 40, 2021, doi: https://doi.org/10.15408/jti.v14i2.23295.
[10] L. Muflikhah, W. F. Mahmudy, and D. Kurnianingtyas, Machine Learning, 1st ed. Malang: UB Press, 2023. [Online]. Available: https://play.google.com/books/reader?id=tu_uEAAAQBAJ&pg=GBS.PR4&hl=id
[11] Rahmaddeni, D. Wulandari, M. Renova, G. Ramadhan, and R. Sari, Machine Learning, 1st ed. 2024. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=owoOEQAAQBAJ&oi=fnd&pg=PA8&dq=buku+machine+learning&ots=X-lpMPhu2V&sig=mpfvmmnXntS5KJkuM8tG37MEogQ&redir_esc=y#v=onepage&q=buku machine learning&f=false
[12] A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 2, p. 121, 2021, doi: 10.22146/ijccs.65176.
[13] A. Tasari, D. Dinata Tarigan, E. Nia, D. B. Purba, K. Saputra, and I. Artikel, “Perbandingan Algoritma Support Vector Machine dan KNN dalam Memprediksi Struktur Sekunder Protein,” J. Inform., vol. 9, no. 2, pp. 172–179, 2022, [Online]. Available: https://raw.githubusercontent.com/JiayingLi/Pr
[14] A. W. Setiawan, R. Mengko, A. P. H. Putri, D. Danudirdjo, and A. R. Ananda, “Classification of palm oil fresh fruit bunch using multiband optical sensors,” Int. J. Electr. Comput. Eng., vol. 9, no. 4, pp. 2386–2393, 2019, doi: 10.11591/ijece.v9i4.pp2386-2393.
[15] R. Mahadyanto, D. A. Prastiningtyas, and F. E. Purwiantono, “Penerapan Metode Jaringan Syaraf Tiruan Radial Basis Function Untuk Identifikasi Jenis Mangga Berdasarkan Pola Daun,” J-INTECH (Journal Inf. Technol., vol. 07, no. 01, pp. 90–96, 2019, doi: https://doi.org/10.32664/j-intech.v7i01.411.
[16] Y. Dimas Pratama and A. Salam, “Comparison of Data Normalization Techniques on KNN Classification Performance for Pima Indians Diabetes Dataset,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 693–706, 2025, doi: 10.30871/jaic.v9i3.9353.
[17] M. S. Fajri, N. Septian, and E. Sanjaya, “Evaluasi Implementasi Algoritma Machine Learning K-Nearest Neighbors (kNN) pada Data Spektroskopi Gamma Resolusi Rendah,” Al-Fiziya J. Mater. Sci. Geophys. Instrum. Theor. Phys., vol. 3, no. 1, pp. 9–14, 2020, doi: 10.15408/fiziya.v3i1.16180.
[18] D. D. Indriani.S, E. J. A. Sinaga, G. Oktavia, H. Syahputra, and F. Ramadhani, “Identifikasi Tanda Tangan Dengan Menggunakan Metode Convolution Neural Network (CNN),” J-INTECH (Journal Inf. Technol., vol. 12, no. 1, pp. 138–147, 2024, doi: 10.32664/j-intech.v12i1.1273.
[19] P. P. Allorerung, A. Erna, M. Bagussahrir, and S. Alam, “Analisis Performa Normalisasi Data untuk Klasifikasi K-Nearest Neighbor pada Dataset Penyakit,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 9, no. 3, pp. 178–191, 2024, doi: 10.14421/jiska.2024.9.3.178-191.
[20] F. A. Tyas, M. Narayuni, and H. Rakhmawati, “Optimasi Algoritma K-Nearest Neighbors Berdasarkan Perbandingan Analisis Outlier (Berbasis Jarak, Kepadatan, LOF),” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 13, no. 02, pp. 108–115, 2024, doi: 10.22146/jnteti.v13i2.9579.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 J-INTECH

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

