Sentiment Analysis of YouTube Comments on K-Pop Music Videos Using Naïve Bayes: A Case Study of Jung Jaehyun's 'Horizon'

Authors

  • Addriana Fatma Putri Indah Sari Universitas Muhammadiyah Sidoarjo
  • Ade Eviyanti Universitas Muhammadiyah Sidoarjo
  • Ika Ratna Indra Astutik Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.32664/smatika.v15i02.1691

Keywords:

K-Pop, Naïve Bayes, Sentiment Analysis, Support Vector Machine, YouTube Comments.

Abstract

This research aims to analyze the sentiment of YouTube comments on the music video "Horizon" by Jung Jaehyun by applying the Naïve Bayes and Support Vector Machine (SVM). As a global phenomenon, K-pop serves as an intriguing subject for understanding interaction patterns and fan opinions on social media platforms, particularly YouTube. A total of 2,391 Indonesian-language comments were collected using the YouTube API and processed through preprocessing stages such as data cleaning, tokenization, normalization, and the removal of common stopwords. After manually labeling the comments for positive and negative sentiments, the data was analyzed using the Naïve Bayes algorithm, known for its simplicity, speed, and effectiveness with small datasets, and compared with SVM equipped with a linear kernel. The study found that while SVM with a linear kernel achieved the highest accuracy of 98% and excelled in handling imbalanced data, Naïve Bayes still delivered competitive results with an accuracy of 97%. The advantages of Naïve Bayes, including ease of implementation, computational efficiency, and performance on small datasets, make it an effective choice for similar sentiment analysis cases. Both algorithms demonstrated good performance in predicting sentiments, as shown in their confusion matrices, although challenges persisted with the negative class. This research contributes to sentiment analysis methodologies by highlighting that Naïve Bayes is an efficient and relevant algorithm for preliminary exploration, while SVM is more reliable for performance optimization on complex datasets. The findings are particularly relevant to the music industry in understanding fan sentiment as an indicator of success.

References

[1] K. Horasman, A. Rara Fauziyah, and C. Siahaan, “Analisis Penggunaan Media Online Kvibes di Kalangan Penggemar Korean Pop (K-Popers),” Jurnal Ilmiah Multidisiplin, vol. 3, no. 6, 2024.

[2] H. Al Rasyid Harpizon et al., “Analisis Sentimen Komentar Di YouTube Tentang Ceramah Ustadz Abdul Somad Menggunakan Algoritma Naïve Bayes,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 1, 2022.

[3] M. R. Yoanita, H. Setiawan, P. Lucky, and T. Irawan, “Analisis Fitur-Fitur Yang Mempengaruhi Jumlah Subscribers Youtube Menggunakan Algoritma Naive Bayes Classifier”.

[4] M. Persada Pulungan, A. Purnomo, A. Kurniasih, S. Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ, and P. Korespondensi, “PENERAPAN SMOTE UNTUK MENGATASI IMBALANCE CLASS DALAM KLASIFIKASI KEPRIBADIAN MBTI MENGGUNAKAN NAIVE BAYES CLASSIFIER APPLICATION OF SMOTE TO OVERCOME CLASS IMBALANCE IN THE MBTI PERSONALITY CLASSIFICATION USING THE NAÏVE BAYES CLASSIFIER”, doi: 10.25126/jtiik.2024117989.

[5] G. K. Pati and E. Umar, “Analisis Sentimen Komentar Pengunjung Terhadap Tempat Wisata Danau Weekuri Menggunakan Metode Naive Bayes Classifier Dan K-Nearest Neighbor,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 2309, Oct. 2022, doi: 10.30865/mib.v6i4.4635.

[6] M. F. Ansyah, Abd. Ghofur, and L. F. Lidimillah, “Analisis Sentimen Komentar Youtube Terhadap Tayangan #Terbaru! Temuan dan Masalah Ahlak Di Ponpes Al-zaytun Menggunakan Metode Naïve Bayes,” G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 2, pp. 847–856, Apr. 2024, doi: 10.33379/gtech.v8i2.4034.

[7] A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” SMATIKA JURNAL, vol. 13, no. 01, pp. 117–130, Jul. 2023, doi: 10.32664/smatika.v13i01.750.

[8] M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 542, Jan. 2022, doi: 10.30865/mib.v6i1.3530.

[9] M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter”.

[10] R. A. Firsttama, A. A. Arifiyanti, and D. S. Y. Kartika, “Analisis Sentimen Komentar Youtube Konferensi Tingkat Tinggi G20 Menggunakan Metode Naive Bayes,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 2, pp. 282–285, Apr. 2024, doi: 10.47233/jteksis.v6i2.1263.

[11] F. Syofiani, S. Alam, and M. I. Sulistyo S, “Analisis Sentimen Penilaian Masyarakat Terhadap Childfree Berdasarkan Komentar di Youtube Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Informatika dan Komputer, vol. 9, no. 2, pp. 688–703, Sep. 2023, doi: 10.37012/jtik.v9i2.1661.

[12] R. A. Raharjo, I. Made, G. Sunarya, D. Gede, and H. Divayana, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter,” vol. 15, no. 2, pp. 456–464, 2022, [Online]. Available: http://journal.stekom.ac.id/index.php/elkompage456

[13] M. A. Laksono, I. A. Kautsar, and H. Setiawan, “Implementasi Payment Gateway pada Platform Freelance Digital Menggunakan Rest API,” SMATIKA JURNAL, vol. 14, no. 01, pp. 135–145, Jun. 2024, doi: 10.32664/smatika.v14i01.1227.

[14] M. I. Santoso and A. R. Dzikrillah, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Pengguna Terhadap Kinerja Sistem Transportasi Umum Jakarta Menggunakan Algoritma Naive Bayes,” Media Online), vol. 4, no. 6, pp. 3032–3043, 2024, doi: 10.30865/klik.v4i6.1936.

[15] N. Muchammad Shiddieqy Hadna, P. Insap Santosa, and W. Wahyu Winarno, “STUDI LITERATUR TENTANG PERBANDINGAN METODE UNTUK PROSES ANALISIS SENTIMEN DI TWITTER,” 2016.

[16] M. A. Jibran, A. Eviyanti, Y. Findawati, F. Sains, and D. Teknologi, “Deteksi Ujaran Kebencian Menggunakan Metode Support Vector Machine (SVM).”

[17] M. O. Charisma, M. F. Hamzah, M. Erwin, I. Nurbaiti, and F. Kurniawan, “Klasifikasi Sentimen Terhadap Kebijakan PHK 55 Ribu Karyawan oleh BT Group menggunakan Algoritma Klasifikasi Naive Bayes,” 2024. [Online]. Available: https://journal-computing.org/index.php/journal-cisa/index

[18] S. Mulyani and R. Novita, “IMPLEMENTATION OF THE NAIVE BAYES CLASSIFIER ALGORITHM FOR CLASSIFICATION OF COMMUNITY SENTIMENT ABOUT DEPRESSION ON YOUTUBE,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 5, pp. 1355–1361, Oct. 2022, doi: 10.20884/1.jutif.2022.3.5.374.

[19] A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes,” vol. 9, no. 2, pp. 785–795, 2022.

[20] M. Jonathan and Y. Nataliani, “Analisis Sentimen Penilaian Masyarakat Indonesia terhadap GeNose pada Komentar Youtube Menggunakan Metode Naïve Bayes.” [Online]. Available: https://ejournal.unsrat.ac.id/index.php/decartesian

[21] D. Nasien et al., “Perbandingan Implementasi Machine Learning Menggunakan Metode KNN, Naive Bayes, Dan Logistik Regression Untuk Mengklasifikasi Penyakit Diabetes,” 2024.

Published

2025-12-17