Implementation of K-Means with Davies-Bouldin Index Evaluation for Grouping Leading Classes at SMP Wijaya Sukodono

Authors

  • Feny Anggraeny Universitas Muhammadiyah Sidoarjo
  • Ade Eviyanti Universitas Muhammadiyah Sidoarjo
  • Sumarno Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.32664/smatika.v15i02.1689

Keywords:

Academic Scores, Davies-Bouldin Index, Elite Class, K-Means Clustering, Student Grouping.

Abstract

This research was conducted at Wijaya Sukodono Middle School, one of the largest schools in Sukodono District which seeks to improve the quality of education by utilizing student academic data. The main objective of this research is to group students based on academic scores using the K-Means Clustering method, which aims to divide students into two categories: Superior Class and Regular Class. The Flagship Class is defined as a group of students with high academic performance, while the Regular Class includes students with lower academic performance. The research method involves collecting report value data, processing, and data transformation, followed by the application of the K-Means algorithm. Evaluation was carried out using the Davies-Bouldin Index (DBI) to assess the quality of clustering. The analysis results show that of the 576 students, 488 students are included in the Superior Class and 88 students are in the Regular Class. The two cluster configuration provides optimal results with a DBI value of 0.337, indicating a good level of inter-cluster certification. This research concludes that the K-Means method is effective in grouping students based on academic performance. These results provide insight into strategies for schools in developing more targeted learning programs to improve the quality of education. Further development can be done by including non-academic variables or exploring other clustering methods for more comprehensive results

References

[1] N. D. Rahayu, A. H. Anshor, I. Afriantoro, and A. Halim Anshor, “Penerapan Data Mining untuk Pemetaan Siswa Berprestasi menggunakan Metode Clustering K-Means Oleh : Penerapan Data Mining untuk Pemetaan Siswa Berprestasi menggunakan Metode Clustering K-Means,” JUKI : Jurnal Komputer dan Informatika, vol. 6, 2024.

[2] H. Afif and M. Arif, “Jurnal Teknik Informatika dan Desain Komunikasi Visual Penerapan Data Mining Untuk Pengelompokan Kelas Siswa Unggulan Berdasarkan Nilai Raport Menggunakan Metode K-Means Clustering ( Studi Kasus: SMK Muhammadiyah 3 Weleri ),” Universitas Selamat Sri, vol. 1, no. 2, 2022.

[3] A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 20–28, Feb. 2023, doi: 10.58602/jaiti.v1i1.22.

[4] E. Desi, S. Aliyah, S. Lestari, and W. Dari, “Implementasi Algoritma K-Means Untuk Penerimaan Siswa Baru Di SMANPAS Berdasarkan Nilai Rapot dan Hasil Tes,” IT (INFORMATIC TECHNIQUE) JOURNAL, vol. 10, no. 1, p. 01, Apr. 2022, doi: 10.22303/it.10.1.2022.01-10.

[5] D. A. Manalu and G. Gunadi, “IMPLEMENTASI METODE DATA MINING K-MEANS CLUSTERING TERHADAP DATA PEMBAYARAN TRANSAKSI MENGGUNAKAN BAHASA PEMROGRAMAN PYTHON PADA CV DIGITAL DIMENSI,” Infotech: Journal of Technology Information, vol. 8, no. 1, pp. 43–54, Jun. 2022, doi: 10.37365/jti.v8i1.131.

[6] S. Widaningsih and S. Yusuf, “Penerapan Data Mining Untuk Memprediksi Siswa Berprestasi Dengan Menggunakan Algoritma K Nearest Neighbor,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 3, 2022, [Online]. Available: http://jurnal.mdp.ac.id

[7] N. F. Hilmi and F. Irwiensyah, “Analisis Sentimen Terhadap Aplikasi Tiktok Dari Ulasan Pada Google Playstore Menggunakan Metode Naïve Bayes,” SMATIKA JURNAL, vol. 14, no. 01, pp. 146–156, Jul. 2024, doi: 10.32664/smatika.v14i01.1210.

[8] I. T. Umagapi, B. Umaternate, S. Komputer, P. Pasca Sarjana Universitas Handayani, B. Kepegawaian Daerah Kabupaten Pulau Morotai, and B. Riset dan Inovasi, “Uji Kinerja K-Means Clustering Menggunakan Davies-Bouldin Index Pada Pengelompokan Data Prestasi Siswa.”

[9] S. Haviyola and M. Jajuli, “PENGELOMPOKAN PRESTASI SISWA GUNA KUALIFIKASI BEASISWA BERDASARKAN DATA NILAI MENGGUNAKAN ALGORITMA K-MEANS.”

[10] M. Aqshal Al Fachrizy and Hendri, “Klasifikasi Pencari Kerja pada Disnaker Menggunakan Metode K-Means Clustering,” Bulletin of Computer Science Research, vol. 4, no. 2, pp. 196–206, Feb. 2024, doi: 10.47065/bulletincsr.v4i2.334.

[11] M. Alexander Justin Audison Sibarani, I. Gede Susrama Mas Diyasa, P. Studi Sains Data, F. Ilmu Komputer, and U. Pembangunan, “PENGGUNAAN K-MEANS DAN HIERARCHICAL CLUSTERING SINGLE LINKAGE DALAM PENGELOMPOKKAN STOK OBAT,” vol. 5, no. 2, 2024, doi: 10.46306/lb.v5i2.

[12] W. Kokoh Andriyan, D. Palembang, J. A. Jenderal Yani No, and P. Sumatera Selatan, “Penerapan Data Mining Dengan Menggunakan Metode K-Means Clustering Dalam Pengelompokan Data Nilai Pada SMA YKPP PENDOPO Untuk Menentukan Jurusan Ipa Dan Ips,” 2023.

[13] B. Kristanto, A. T. Zy, and M. Fatchan, “Analisis Penentuan Karyawan Tetap Dengan Algoritma K-Means Dan Davies Bouldin Index,” Bulletin of Information Technology (BIT), vol. 4, no. 1, pp. 112–120, 2023, doi: 10.47065/bit.v3i1.

[14] A. Kristianto, “Implementasi DBSCAN dalam Clustering Data Minat Mahasiswa Setelah Pandemi Covid19,” 2022.

[15] G. Triyandana, L. A. Putri, and Y. Umaidah, “Penerapan Data Mining Pengelompokan Menu Makanan dan Minuman Berdasarkan Tingkat Penjualan Menggunakan Metode K-Means,” 2022. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[16] N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” 2024, doi: 10.58602/jima-ilkom.v3i1.26.

[17] F. Yunita, “PENERAPAN DATA MINING MENGGUNKAN ALGORITMA K-MEANS CLUSTRING PADA PENERIMAAN MAHASISWA BARU (STUDI KASUS : UNIVERSITAS ISLAM INDRAGIRI),” 2018.

[18] R. Ishak, “Volume 5 Nomor 2 Juli 2023 Penerapan Algoritma XGBoost untuk Seleksi Atribut pada K-Means dalam Clustering Penerima KIP Kuliah,” Jambura Journal of Electrical and Electronics Engineering, vol. 192.

[19] Y. Hasan, “PENGUKURAN SILHOUETTE SCORE DAN DAVIES-BOULDIN INDEX PADA HASIL CLUSTER K-MEANS DAN DBSCAN,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3S1, Oct. 2024, doi: 10.23960/jitet.v12i3S1.5001.

[20] S. Mutiah, Y. Hasnataeni, A. Fitrianto, E. Erfiani, and L. M. R. D. Jumansyah, “Perbandingan Metode Klastering K-Means dan DBSCAN dalam Identifikasi Kelompok Rumah Tangga Berdasarkan Fasilitas Sosial Ekonomi di Jawa Barat,” Teorema: Teori dan Riset Matematika, vol. 9, no. 2, p. 247, Sep. 2024, doi: 10.25157/teorema.v9i2.16290.

Published

2025-12-17