SMATIKA : STIKI Informatika Jurnal
Vol. 15, No. 2, Desember 2025, pp. 322~330
ISSN: 2087-0256, e-ISSN: 2580-6939

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase
Konstruksi Aplikasi: MEAN, MERN, dan MEVN

Koko Wahyu Prasetyo 1*
Bima Reynaldi Sumitro 2

L2Fakultas Sains Teknologi, JI. Raya Tidar No.100, Karangbesuki, Kec. Sukun, Kota Malang, Jawa
Timur 65146, Universitas Bhinneka Nusantara, Indonesia
1koko@ubhinus.ac.id, 2181111078@mbhs.stiki.ac.id

*Penulis Korespondensi:
Koko Wahyu Prasetyo
koko@ubhinus.ac.id

Abstrak

Perkembangan pesat pada framework dan stack berbasis JavaScript memudahkan sinkronisasi logika frontend dan
backend, tetapi menimbulkan dilema bagi entitas pengembang aplikasi kecil-menengah yang harus memilih stack
teknologi berdasarkan keterbatasan sumber daya. Studi-studi terdahulu cenderung mengevaluasi Angular, React, atau
Vue secara terpisah, berfokus pada metrik kinerja atau tampilan, dan mengabaikan dimensi kemudahan pemeliharaan.
Akibatnya, penelitian empiris sebagai panduan keputusan pemilihan stack Javascript masih terbatas. Penelitian ini
mengisi kesenjangan tersebut dengan membandingkan MEAN, MERN, dan MEVN melalui empat indikator kuantitatif:
lines of code (LOC), skor Lighthouse, kedalaman call-stack, dan konsumsi memori. Eksperimen komparasi dilakukan
terhadap tiga prototipe sistem informasi yang dikonstruksi secara identik. Hasil eksperimen menunjukkan MERN
menghasilkan LOC dan konsumsi memori paling rendah, MEVN memiliki call-stack paling sederhana, sedangkan
ketiganya menunjukkan skor kinerja nyaris identik. Temuan penelitian ini dikonfirmasikan dengan literatur terkini dan
menunjukkan bahwa aspek pemilihan framework terkait modularitas, efisiensi memori, dan kompleksitas
pemeliharaan lebih menentukan daripada aspek performa kinerja semata.

Kata Kunci: Angular; JavaScript; React; Tumpukan Web (Web Stack); Vue.

Abstract

The rapid evolution of JavaScript frameworks and stacks streamlines frontend and backend integration, yet forces small-
to-medium teams to choose a technology stack that fits their resource constraints. Prior studies typically evaluate Angular,
React, or Vue in isolation, focus on rendering-speed metrics, and overlook maintainability aspects, leaving limited empirical
guidance for holistic stack selection. Addressing this gap, the present work compares MEAN, MERN, and MEVN on
identically featured application prototypes using four quantitative indicators: lines of code (LOC), Lighthouse score, call-
stack depth, and memory footprint. Experiments reveal that MERN achieves the lowest LOC and memory usage, MEVN
exhibits the shallowest call stack, and all three stacks attain near-identical performance scores. By relating these findings
to recent literature, this study demonstrates that trade-offs among modularity, memory efficiency, and maintenance
complexity could outweigh performance differences.

Keywords: Angular; JavaScript; React; Vue; Web Stack.

1. Pendahuluan

Pada masa awal kegiatan pengembangan aplikasi web, umumnya terdapat satu atau beberapa
pengembang aplikasi menangani seluruh proses pembuatan aplikasi tanpa pembagian tugas
terstruktur. Saat ini, peran tersebut terdistribusi secara lebih spesifik: frontend developer
merancang antarmuka pengguna, sedangkan backend developer memproses data yang
dimasukkan pengguna dan menyimpannya ke basis data [1]. Segmentasi ini mendorong
munculnya beragam teknologi dan bahasa pemrograman.

Untuk sisi belakang (backend), terdapat beragam bahasa pemrograman yang dapat dipilih dengan
berbasis Python [2], JavaScript [3], GoLang [4][5] , Java [6], maupun sejumlah framework yang
berbasis PHP [7][8][9]. Sedangkan pada sisi depan (frontend), pilihan didominasi oleh JavaScript
dan turunan TypeScript [10]. Berdasarkan karakteristik teknis JavaScript yang dapat dipakai di
kedua sisi aplikasi, sejumlah pengembang memilih satu bahasa seragam sepanjang siklus hidup
aplikasi [11]. Konsep ini melahirkan tiga tech stack berbasis JavaScript: MEAN (MongoDB,

Cite: Prasetyo, K.W., (2025). Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN,
MERN, dan MEVN. SMATIKA : STIKI Informatika Jurnal, 15(2). doi: https://doi.org/10.32664/smatika.v15i02.2040
322

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

Express.js, Angular, Node.js) [12], MERN (MongoDB, Express.js, React, Node.js) [13], dan MEVN
(MongoDB, Express.js, Vue, Node.js) [14].

Ketiga stack tersebut berbagi tiga komponen utama: MongoDB sebagai basis data NoSQL yang
mendukung JSON, Express.js sebagai web framework di atas Node.js, serta Node.js sebagai runtime
environment JavaScript yang dibangun di atas mesin V8 Chrome [15]. Perbedaannya hanya
terletak pada kerangka kerja frontend: Angular, React, atau Vue. Masing-masing menawarkan fitur
unggulan berbeda, antara lain: jumlah baris kode, pola komponen, manajemen state, performa,
lazy loading, penggunaan transpiler, dan fitur khas lainnya [16].

Studi komparatif sebelumnya berfokus pada evaluasi kerangka kerja Angular, React, dan Vue [17]
tanpa menilai keseluruhan stack secara terpadu: mulai dari basis data, runtime, hingga pola
arsitektur. Selain itu, metrik yang digunakan terbatas pada waktu render atau skor Lighthouse.
Sedangkan dimensi maintainability seperti panjang kode, kedalaman call stack, dan efisiensi
memori belum diteliti lebih lanjut. Komparasi ini membutuhkan indikator properti internal dan
eksternal sebagai acuan kerangka kerja. Penelitian [18] dan [19] melakukan eksperimen
menggunakan metrik seperti penggunaan memori, jumlah fungsi yang dipanggil per operasi
CRUD, dan waktu eksekusi. Metrik konvensional seperti LOC (lines of code) juga masih relevan
untuk digunakan dalam komparasi performa aplikasi [20]. Penelitian [21] melakukan komparasi
performa antara aplikasi berbasis framework dan non-framework. Sedangkan [22] dan [23]
mengevaluasi framework web melalui metrik baris kode, performa di peramban, serta struktur
kode MVC dan OOP. Kondisi ini menciptakan kesenjangan pengetahuan dan terbatasnya referensi
empiris mengenai pemilihan framework, terutama di lingkungan di mana pengembangan aplikasi
kerap dipengaruhi oleh keterbatasan sumber daya pengembang dan infrastruktur.

Penelitian ini memberikan dua kontribusi utama untuk merespon kesenjangan tersebut.
Penelitian ini menyajikan evaluasi empiris multidimensional terhadap MEAN, MERN, dan MEVN
dengan menggunakan empat metrik tambahan pada fase konstruksi prototipe aplikasi yang
identik: LOC, kinerja aplikasi, jumlah pemanggilan fungsi, dan konsumsi sumber daya memori.
Penelitian ini juga merumuskan panduan praktis pemilihan stack yang mempertimbangkan
kompromi antara efisiensi memori, modularitas kode, dan stabilitas performa sehingga dapat
panduan yang relevan bagi entitas pengembang kecil menengah yang memiliki keterbatasan
sumber daya. Dengan demikian, penelitian ini memperluas cakupan komparasi berbasis
JavaScript sekaligus menyediakan bukti komprehensif bagi praktisi dan akademisi.

2. Metode Penelitian

Tahapan yang digunakan pada penelitian ini dapat dilihat pada Gambar 1. Penelitian dimulai
dengan menganalisis literatur tentang tech stack berbasis JavaScript. Studi literatur menunjukkan
terdapat tiga stack paling populer sebagai obyek komparasi: MEAN, MERN, dan MEVN. Langkah
berikutnya ialah mengumpulkan data teknis yang relevan. Peneliti mengkaji prasyarat
pengembangan aplikasi untuk masing-masing stack, pemahaman kerangka Kkerja frontend-
backend, pengelolaan basis data MongoDB, pemanfaatan Node.js, serta menyelesaikan fase
kontruksi aplikasi web obyek eksperimen.

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

323

https://creativecommons.org/licenses/by-sa/4.0/

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

- * Javascript
StUdl framework

|itel’atur * Komparasi webh

framework

Analisis
 Fitur
kEbUtUhan transaksional
aplikasi

* Pengembangan

Konstruksi kode aplikasi
. . * Konfigurasi
aplikasi obyek

komparasi

Ujl «10C
* Performance

kompa rasi e Call stack
IR O « Memory usage

Gambar 1. Alur tahapan penelitian

Perencanaan aplikasi diawali dengan identifikasi kebutuhan aplikasi sistem informasi yang akan
dikembangkan di tahapan konstruksi. Kebutuhan tersebut meliputi fitur transaksional aktivitas
kesiswaan sekolah yang dibatasi dalam lingkup dasar agar kompleksitas teknisnya tetap
terkendali dan fokus komparasi tertuju pada perbandingan stack dalam rentang waktu penelitian
yang sudah ditetapkan. Selanjutnya untuk memperkuat landasan teoretis, peneliti mengkaji
literatur terkait komparasi stack dan evaluasi performa aplikasi, sehingga kerangka penelitian
dapat didasarkan pada temuan-temuan empiris terdahulu.

Tahap analisis kebutuhan aplikasi kemudian dilaksanakan dengan menyusun artefak seperti use-
case diagram dan rancangan user interface. Rancangan tersebut menjadi pedoman pada fase
konstruksi, di mana tiga aplikasi serupa dibangun menggunakan MEAN, MERN, dan MEVN secara
terpisah. Metrik variabel yang digunakan pada tahap komparasi meliputi: (1) jumlah baris kode
(lines of code), (2) kinerja komputasi (performance), (3) prosedur eksekusi (number of functions),
serta (4) penggunaan memori (memory usage).

Setelah ketiga aplikasi melewati fase konstruksi, peneliti melaksanakan pengujian terhadap
ketiga set aplikasi untuk mengevaluasi kelebihan dan kekurangan setiap stack. Hasil pengujian
dianalisis lebih lanjut dengan mengevaluasi ketiga set aplikasi berdasarkan metrik-metrik
komparasi yang telah diuraikan di atas.

3. Hasil Penelitian

Obyek dan konfigurasi aplikasi

Proses komparasi dilakukan terhadap tiga set aplikasi dengan fitur transaksional yang identik
sebagaimana dimodelkan dalam Gambar 2. Ketiga aplikasi dikembangkan pada basis
infrastruktur yang sama, namun menggunakan versi framework yang berbeda pada fase
konstruksi sebagaimana disajikan pada Tabel 1.

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

324

https://creativecommons.org/licenses/by-sa/4.0/

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

Cari siswa manggunokan fiiter berikut

Ix10
>}

........

Gambar 2. Fitur transaksional dan tampilan prototipe aplikasi obyek komparasi

Tabel 1. Versi konfigurasi stack obyek komparasi

Konfigurasi MEAN Stack Konfigurasi MERN Stack Konfigurasi MEVN Stack

MongoDB version 6.2 MongoDB version 6.2 MongoDB version 6.2
Express]S version 4.16 Express]JS version 4.16 Express]S version 4.16
Angular version 16 React version 18 Vue]JS version 3
Node]S version 20 Node]S version 20 Node]S version 20

Chrome Desktop 122.0 64-bit Chrome Desktop 122.0 64-bit Chrome Desktop 122.0 64-bit
Jumlah baris kode (lines of code, LOC)
Metrik ini diukur dengan menganalisis kode ketiga aplikasi pada seluruh layer dan package yang
telah dikembangkan pada fase konstruksi aplikasi dengan menggunakan ekstensi VS Code
Counter pada editor Visual Studio Code sebagaimana ditunjukkan pada Gambar 3. Hasil
komparasi metrik LOC dapat dilihat pada Tabel 2.

Date : 2022-10-25 09:04:26

Directory diwampp\htdocs\final-course\MEAN\src

Total : 145 file:

Summary / Details / Diff Summary / Diff Details
Languages Languages

language files code comment blank total language files code comment blank total

246 4232

css 33 1302 33 125 1466

Gambar 3. Tampilan layar ekstensi komparasi baris kode

Tabel 2. Rekapitulasi komparasi jumlah baris kode

Lines of Code Total

Stack Typescript CSS XML HTML TypescriptReact Vue
Angular 3225 1302 56 1993 - - 6605
React 344 1021 60 - 3495 - 4920
Vue 426 708 57 - - 3959 5150

Tabel 2 menunjukkan bahwa aplikasi berbasis Angular membutuhkan baris kode terbanyak
(6605 LOC), lalu diikuti Vue (5150 LOC) dan React (4920 LOC).

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

325

https://creativecommons.org/licenses/by-sa/4.0/

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

ANGULAR REACT VUE

| i
i

Gambar 4. Contoh komparasi modularitas struktur kode Angular, React, dan Vue

Hasil komparasi juga menunjukkan bahwa komposisi modularitas kode aplikasi bervariasi
sebagaimana yang dicontohkan melalui Gambar 4. Angular memusatkan logika pada kode
TypeScript (3225 LOC) dan memisahkan tampilan ke kode HTML secara terpisah (1993 LOC),
sehingga struktur proyek lebih berlapis. React mengintegrasikan logika dan tampilan pada kode
TypeScript React (3495 LOC), yang dapat menyederhanakan pemetaan fitur tetapi berpotensi
menjadi titik utama ketika terjadi perubahan signifikan terhadap kode. Sementara itu, Vue
menempatkan sebagian besar fungsionalitas dalam kode yang menggabungkan skrip, template,
dan format styling, sehingga mengurangi jumlah kode tetapi membutuhkan pengelolaan struktur
kode yang lebih rapi.

Kinerja aplikasi (performance)

Pengujian kinerja dilakukan menggunakan ekstensi Lighthouse pada aplikasi peramban Chrome
Desktop 64-bit seperti ditunjukkan pada Gambar 5. Ketiga aplikasi telah di-deploy dengan basis
data yang identik memanfaatkan skema collections pada MongoDB. Skema data yang digunakan
merupakan data eksperimen yang digunakan pada fase konstruksi dan uji coba di infrastruktur
pengembangan (non-production). Hasil komparasi menunjukkan skor kinerja yang hampir sama.
Angular, React, dan Vue sama-sama memperoleh nilai Performance 99/100, Accessibility 95/100,
dan Best Practices 92/100, sedangkan skor SEO tercatat 80/100 untuk Angular dan React. Hasil
ini menandakan bahwa konfigurasi optimalisasi bawaan di ketiga stack mampu menghasilkan
halaman yang responsif meski memuat data berkapasitas moderat.

ANGULAR REACT VUE

® & @ ® 6 6 > =

-/

® First Contentil Paint ® Tmetolntacactive ® First Contentil Paint ® Timetontera
08s 08s 08s 08s

0oms

Gambar 5. Tampilan layar ekstensi Lighthouse untuk uji kinerja

Perbandingan metrik juga mengungkap perbedaan minor tetapi konsisten: Vue unggul tipis
dengan First Contentful Paint (FCP), Speed Index, dan Time to Interactive (TTI) sebesar 0,7 detik,
sementara Angular dan React berada di kisaran 0,8 detik. Largest Contentful Paint (LCP) juga lebih

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

326

https://creativecommons.org/licenses/by-sa/4.0/

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

rendah pada Vue (0,7 detik) dibanding 0,9 detik pada dua stack lainnya. Total Blocking Time dan
Cumulative Layout Shift sama-sama nol pada ketiga aplikasi, menandakan beban skrip minimal
dan stabilitas tata letak baik.

Eksekusi fungsi (call stack)

Tabel 3 menunjukkan bahwa stack MERN memerlukan pemanggilan fungsi paling banyak yaitu
sebanyak 27 kali untuk menyelesaikan empat operasi CRUD. Selanjutnya diikuti MEAN sebanyak
17 kali, sementara MEVN hanya 10 kali. Pola ini konsisten pada setiap kategori: MERN selalu
memuncaki jumlah panggilan, MEAN berada di posisi selanjutnya, dan MEVN terendah. Dengan
kata lain, MERN mengaktifkan rata-rata 6-7 fungsi per operasi, MEAN 2-7 fungsi, sedangkan
MEVN cukup 2-3 fungsi. Selisih tersebut menggambarkan variasi komposisi logika: React
cenderung memecah tanggung jawab ke dalam banyak fungsi pengelola (handler), Angular
menggunakan layanan terpisah namun tetap mengandalkan beberapa fungsi terpadu, sedangkan
Vue mengemas logika lebih ringkas dalam komponen single-file.

Tabel 3. Komparasi eksekusi fungsi (call stack)

Stack Create Read Update Delete Total
MEAN (Angular) 5 3 7 2 17
MERN (React) 7 7 7 6 27
MEVN (Vue) 3 2 3 2 10

Dari sudut pandang pemeliharaan kode, jumlah pemanggilan fungsi yang lebih tinggi dapat
memperjelas pemisahan tugas namun sekaligus menambabh jejak call stack yang perlu ditelusuri
saat proses debug. Sebaliknya, call stack yang lebih pendek pada MEVN memudahkan pelacakan
alur eksekusi, namun berpotensi menggabungkan terlalu banyak logika di satu tempat jika tidak
dikelola dengan baik. Berdasarkan hasil ini, pemilihan stack sebaiknya juga mempertimbangkan
kriteria prioritas antara modularitas (MERN), Kkeseimbangan struktur (MEAN), dan
penyederhanaan call stack (MEVN) sesuai preferensi tim pengembang.

Konsumsi memori (memory usage)

Tabel 3 berikut menunjukkan bahwa React merupakan stack yang paling efisien dalam
penggunaan memori, dengan rata-rata konsumsi 37260 kB. Angka tersebut sekitar 10% lebih
rendah daripada Angular (41573 kB) dan 15% di bawah Vue (43958 kB). Pola penurunan memori
pasca eksekusi fungsi juga terlihat paling tajam pada React, dari 44452 kB (P1) menjadi 33076 kB
(P2), sebelum naik kembali ke 34252 kB (P3). Angular menunjukkan profil menengah: fluktuasi
8664 kB antara skenario tertinggi dan terendah, sedangkan Vue memerlukan memori terbesar
tetapi paling stabil di mana terdapat selisih 3436 kB antar skenario.

Tabel 4. Hasil komparasi konsumsi memori (memory usage)

Stack / Percobaan P1 P2 P3 Rata - rata
MEAN (Angular) 45.804k 37.140k 41.776k 41.573k
MERN (React) 44452k 33.076k 34.252k 37.260k
MEVN (Vue) 46.408k 42972k 42.496k 43.958k

Perbedaan ini mencerminkan strategi pengelolaan state dan mekanisme garbage collection pada
masing-masing kerangka kerja. React cenderung agresif dalam melepaskan objek yang tak
terpakai, menghasilkan konsumsi memori paling kecil namun terdapat lonjakan saat eksekusi
awal (P1). Vue, dengan arsitektur single-file, mempertahankan lebih banyak konteks di memori
sehingga stabil sepanjang transaksi. Angular berada di antaranya, menyeimbangkan modularitas
layanan dan efisiensi memori.

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

327

https://creativecommons.org/licenses/by-sa/4.0/

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

4. Pembahasan

Hasil eksperimen menunjukkan bahwa Angular menghasilkan baris kode terbesar, React paling
ringkas, dan Vue berada di antara keduanya. Penelitian [18] menegaskan bahwa volume kode
cenderung meningkatkan kompleksitas pemeliharaan karena setiap revisi menyentuh lebih
banyak artefak . Penelitian [19] turut melaporkan bahwa beban debugging lebih tinggi pada
proyek dengan LOC besar. Dengan demikian, potensi pekerjaan pemeliharaan akan relatif lebih
tinggi pada proyek aplikasi yang dikembangkan dengan Angular dibandingkan dengan React atau
Vue.

Namun demikian, kedalaman call-stack memperlihatkan pola berbeda: React memanggil rata-rata
27 fungsi per operasi CRUD, sementara Vue hanya 10. Dalam penelitian [20], ditemukan bahwa
modularitas ekstrem dapat meningkatkan keterlacakan tetapi juga memperpanjang jejak
eksekusi program. Dengan demikian, meski React cenderung lebih efisien dari sisi LOC, namun
kompleksitas call-stack-nya menuntut disiplin pengembang selama fase kontruksi dan
pemeliharaan. Sebaliknya, Vue menawarkan alur eksekusi yang lebih singkat namun berpotensi
menumpuk kode logika di satu komponen apabila tidak dikendalikan dengan baik. Perbedaan
pola ini perlu dipertimbangkan oleh pengembang aplikasi ketika membandingkan aspek
kemudahan pengembangan, skalabilitas, dan pekerjaan pemeliharaan.

Dari sisi performa, ketiga aplikasi meraih skor hampir identikdengan selisih FCP 0,1 detik antara
Vue dan dua pesaingnya. Kinerja serupa ini menegaskan temuan [16] bahwa optimasi konfigurasi
mampu meratakan kesenjangan performa antar kerangka kerja. Penelitian [10] dan [17] juga
melaporkan perbedaan minor pada metrik rendering di lingkungan produksi. Secara praktis,
selisih 0,1 hingga 0,2 detik semestinya tidak membawa dampak signifikan terhadap pengalaman
pengguna. Pernyataan tersebut konsisten dengan yang ditemukan pada penelitian ini, namun
dengan variabel lingkungan dan konfigurasi yang berbeda. Oleh karena itu, pilihan stack tidak
hanya dipengaruhi oleh kinerja luaran halaman, melainkan juga faktor kualitas kode internal yang
mempengaruhi siklus hidup proyek di fase selanjutnya.

Pengujian memori memperlihatkan React sebagai stack paling efisien, diikuti Angular dan Vue.
Efisiensi ini mendukung rekomendasi [20] bahwa konsumsi memori yang efisien krusial bagi
lingkungan dengan infrastruktur aplikasi yang terbatas. Vue menampilkan konsumsi stabil tapi
dalam angka yang tinggi, di mana situasi tersebut relevan dengan kecenderungan arsitektur
single-file. Angular berada di titik kompromi: memori moderat sekaligus struktur kode paling
terpisah, sesuai praktik best-practice yang dianjurkan pada literatur [19]. Bagi proyek berskala
kecil pada perangkat komputer dengan sumber daya terbatas, React menawarkan keuntungan
pragmatis, sedangkan Vue cocok saat konsistensi performa lebih diutamakan. Angular dapat
menjadi opsi yang wajar ketika tim membutuhkan struktur kode yang jelas tanpa kerugian
memori yang signifikan.

Secara keseluruhan, hasil eksperimen komparasi pada penelitian ini mendukung temuan literatur
bahwa tidak ada satu pun stack yang unggul secara absolut di semua metrik. Angular menawarkan
arsitektur yang kokoh namun menghasilkan LOC besar. React menawarkan konsumsi memori dan
LOC yang efisien tetapi eksekusi berlapis membawa kompleksitas tersendiri. Vue paling
sederhana apabila ditelusuri berdasarkan strukturnya, namun relatif boros memori. Oleh karena
itu, keputusan pemilihan stack harus mempertimbangkan konteks dan prioritas tujuan proyek:
ketersediaan sumber daya, kebutuhan pemeliharaan jangka panjang, dan profil perangkat target.

5. Penutup

Hasil analisis komparasi mengungkap pola yang konsisten di keempat kriteria. Angular
menghasilkan kode paling panjang dengan kompleksitas call-stack menengah. Sedangkan React
menghasilkan kode paling ringkas, namun memecah logika kode ke dalam struktur fungsi yang
paling kompleks. Vue berada di posisi tengah untuk jumlah baris kode namun memperlihatkan

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

328

https://creativecommons.org/licenses/by-sa/4.0/

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

eksekusi fungsi yang paling ringkas. Pada pengujian kinerja aplikasi, ketiganya meraih skor
kinerja setara dan tidak menunjukkan perbedaan signifikan. Dari sisi konsumsi memori, React
diindikasikan paling efisien, disusul dengan Angular dan Vue.

Temuan tersebut menegaskan bahwa tidak ada stack yang dominan unggul di semua aspek.
Masing-masing stack menawarkan kriteria kompromi yang berbeda. React dapat digunakan pada
aplikasi yang sedikit membutuhkan sumber daya komputasi dengan basis kode yang padat,
selama tim pengembang dapat mengelola call-stack yang lebih rumit. Vue dapat dipilih ketika
konsistensi performa dan eksekusi menjadi prioritas, meski dengan konsumsi memori yang
sedikit lebih tinggi. Angular memberi struktur paling mandiri dengan arsitektur yang rapi, namun
dengan jumlah baris kode terbesar. Dengan demikian, pemilihan stack sebaiknya
mempertimbangkan konteks proyek, kapasitas tim, dan sumber daya perangkat keras.

6. Referensi

[1] Y. Gong, F. Gu, K. Chen, and F. Wang, “The Architecture of Micro-services and the Separation
of Frond-end and Back-end Applied in a Campus Information System,” in 2020 IEEE
International Conference on Advances in Electrical Engineering and Computer Applications(
AEECA), IEEE, Aug. 2020, pp. 321-324. doi: 10.1109/AEECA49918.2020.9213662.

[2] S. Supria and others, “Perbandingan Performa Framework Laravel, Flask API Python, dan
PHP Native untuk Aplikasi API pada Data AIS Polbeng,” in Seminar Nasional Industri dan
Teknologi, 2024, pp. 17-23.

[3] S. I Putri and M. Rofiq, “Perancangan Pemesanan Fasilitas Rumah Sakit Menggunakan
Model View Controller (MVC) Berbasis Android,” SMATIKA JURNAL, vol. 7, no. 02, pp. 36-
39, Dec. 2017, doi: 10.32664 /smatika.v7i02.156.

[4] A. S. Sari and R. Hidayat, “Designing Website Vaccine Booking System Using Golang
Programming Language and Framework React]S,” Journal of Information System,
Informatics and Computing, vol. 6, no. 1, 2022, doi: 10.52362 /jisicom.v6i1.760.

[5] S. Suwarno and A. P. Yulandi, “Analisis Performa Backend Framework: Studi Komparasi
Framework Golang dan Node.js,” Jurasik, vol. 8,no. 1, 2023, doi: 10.30645 /jurasik.v8i1.551.

[6]].S.Heredia and G. C. Sailema, “Comparative Analysis for Web Applications Based on REST
Services: MEAN Stack and Java EE Stack,” KnE Engineering, vol. 3, no. 9, p. 82, Dec. 2018,
doi: 10.18502/keg.v3i9.3647.

[71 F.R.A.Abdullah, H. H. Nuha, R. G. Utomo, and A. D. Afasyah, “Implementation of User and
Article Module Design and Testing on Innovation Dashboard Backend Using PHP Laravel
and RESTful APL” in 2024 International Conference on Decision Aid Sciences and
Applications (DASA), IEEE, Dec. 2024, pp. 1-6. doi: 10.1109/DASA63652.2024.10836333.

[8] R.Annisa, P. A. Rahayuningsih, and A. Anna, “Aplikasi Kontrol Barang Habis Pakai Berbasis
Web sebagai Solusi Manajemen Inventaris,” J-INTECH, vol. 12, no. 02, pp. 411-421, Dec.
2024, doi: 10.32664/j-intech.v12i02.1544.

[9] P.Y. Pratama, Abd. C. Fauzan, and T. Prabowo, “Perancangan Sistem Informasi Inventaris
pada PT. Rejoso Manis Indo Menggunakan Metode Rapid Application Development,”
SMATIKA JURNAL, vol. 14, no. 01, pp. 71-85, Jul. 2024, doi: 10.32664 /smatika.v14i01.1209.

[10] G.Kaur and R. G. Tiwari, “Comparison and Analysis of Popular Frontend Frameworks and
Libraries,” in 2023 4th International Conference on Electronics and Sustainable
Communication Systems (ICESC), 2023, pp. 1067-1073.

[11] A. Shukla, “Modern JavaScript Frameworks and JavaScript's Future as a FullStack
Programming Language,” Journal of Artificial Intelligence & Cloud Computing, pp. 1-5, Dec.
2023, doi: 10.47363/JAICC/2023(2)144.

[12] A.]. Poulter, S.]. Johnston, and S.]. Cox, “Using the MEAN stack to implement a RESTful
service for an Internet of Things application,” in 2015 IEEE 2nd World Forum on Internet of
Things (WF-10T), IEEE, Dec. 2015, pp. 280-285. doi: 10.1109/WF-10T.2015.7389066.

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

329

https://creativecommons.org/licenses/by-sa/4.0/

Analisis Komparasi Web Stack Berbasis JavaScript pada Fase Konstruksi Aplikasi: MEAN, MERN, dan MEVN

[13]

[14]

[15]

[23]

M. M. Ishaq, P. Singh, S. Badjatya, S. Kumar, Y. Tomar, and S. Bansal, “Design and
Development of a User-Friendly Social Media App using the MERN Stack,” in 2023
International Conference on Circuit Power and Computing Technologies (ICCPCT), IEEE, Aug.
2023, pp. 1730-1736. doi: 10.1109/1CCPCT58313.2023.10245371.

M. R. Akbar, “Pengembangan Sistem Informasi Monitoring dan Evaluasi Perkuliahan
Dengan Metode Agile Feature Driven pada Fakultas Teknik Universitas Negeri Jakarta,”
Universitas Negeri Jakarta, 2024. [Online]. Available: http://repository.unj.ac.id/45709/
Y. Xing,]. Huang, and Y. Lai, “Research and Analysis of the Front-end Frameworks and
Libraries in E-Business Development,” in Proceedings of the 2019 11th International
Conference on Computer and Automation Engineering, New York, NY, USA: ACM, Feb. 2019,
pp. 68-72. doi: 10.1145/3313991.3314021.

D. Bogusz, P. Ciszewski, and B. Panczyk, “Performance analysis of web application client
layer development tools us-ing Angular, React and Vue as examples,” Journal of Computer
Sciences Institute, vol. 32, pp. 223-230, Sep. 2024, doi: 10.35784 /jcsi.6299.

R. Vyas, “Comparative Analysis on Front-End Frameworks for Web Applications,” Int | Res
Appl Sci Eng Technol, vol. 10, no. 7, pp. 298-307, Jul. 2022, doi:
10.22214 /ijraset.2022.45260.

J. Samra, “Comparing Performance of Plain PHP and Four of Its Popular Frameworks,”
2015. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:Inu:diva-45691

R. Y. Endra, Y. Aprilinda, Y. Y. Dharmawan, and W. Ramadhan, “Analisis Perbandingan
Bahasa Pemrograman PHP Laravel dengan PHP Native pada Pengembangan Website,”
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, vol. 11, no. 1, p. 48, Jun. 2021,
doi: 10.36448/expert.v11i1.2012.

S. Sharma and S. Srinivasan, “A Survey on Software Design Based and Project Based
Metrics,” International Journal of Computer Theory and Engineering, vol. 14, no. 2, pp. 54-
61,2022, doi: 10.7763/1JCTE.2022.V14.1310.

W. Setiawan, “Studi Komparasi Pengembangan Website Menggunakan Framework dan
Non Framework,” in Conference on Business, Social Sciences and Innovation Technology,
2020, pp. 622-629.

A. Niarman, Iswandi, and A. K. Candri, “Comparative Analysis of PHP Frameworks for
Development of Academic Information System Using Load and Stress Testing,”
International Journal Software Engineering and Computer Science (IJSECS), vol. 3, no. 3, pp.
424-436, Dec. 2023, doi: 10.35870/ijsecs.v3i3.1850.

N. Nakajima, S. Matsumoto, and S. Kusumoto, “Jact: A Playground Tool for Comparison of
JavaScript Frameworks,” in 2019 26th Asia-Pacific Software Engineering Conference
(APSEC), IEEE, Dec. 2019, pp. 474-481. doi: 10.1109/APSEC48747.2019.00070.

© 2025 SMATIKA Jurnal. Published by LPPM UBHINUS Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

330

https://creativecommons.org/licenses/by-sa/4.0/

