Classification of Stinging Nettle Plants Based on Leaf Images Using the CNN Method (Case Study: Biru-Biru Village)
DOI:
https://doi.org/10.32664/j-intech.v13i02.2131Keywords:
Stinging Nettle, Leaf Image Classification, CNN, MobileNetV2, Desa Biru-Biru.Abstract
The high number of skin irritation cases among residents in Desa Biru-Biru due to direct contact with stinging nettle plants highlights the need for an automatic identification system to distinguish plant types. This study aims to develop a leaf image classification model for stinging nettle plants using the Convolutional Neural Network (CNN) algorithm with the MobileNetV2 architecture. The image dataset was collected directly from the study area and classified into four categories: Jelatang Ayam, Jelatang Gajah, Jelatang Niru, and Non-Nettle plants. The research stages include data collection and analysis, pre-processing (resizing, normalization, augmentation), data splitting (70:10:20), model training, performance evaluation (accuracy, precision, recall, and F1-score), and web-based system implementation. The test results show that the model achieved an accuracy of 98%, with the highest precision score of 0.98, recall score of 0.98, and F1-score of 0.98. The system has also been successfully implemented as an interactive web application that allows users to identify nettle plant types quickly and accurately. This research contributes to risk mitigation efforts related to harmful plants in rural environments through the application of digital image processing technology.
References
[1] I. Z. S. Ifham Fuadi Rambe, Rinto N.P Rajaguguk, Keanekaragaman Hayati Balai Taman Nasional Batang Gadis. 2021.
[2] A. B. Prasetio, Irwanto, and Y. S. Mochamad, “Implementasi Segmentasi Citra dengan Metode Threshold pada Pengolahan Citra Digital Tanaman Beracun di Indonesia,” Jurnal Teknik Informatika. pp. 2–5, 2019.
[3] A. E. Prawira, “Viral! Pendaki Menjerit dan Meringis Kesakitan Tersentuh Daun Jancuk di Jalur Gunung, Kenapa Bisa Gitu Ya?,” Liputan6.com. [Online]. Available: https://www.liputan6.com/health/read/5615312/viral-pendaki-menjerit-dan-meringis-kesakitan-tersentuh-daun-jancuk-di-jalur-gunung-kenapa-bisa-gitu-ya
[4] S. Müller-Wille, “Carolus Linnaeus,” britannica.com. [Online]. Available: https://www.britannica.com/biography/Carolus-Linnaeus?utm_source=chatgpt.com
[5] Asril, “Mengatasi Ruam Akibat Daun Jelatang Niru,” rri.co.id. [Online]. Available: https://www.rri.co.id/lain-lain/1224676/mengatasi-ruam-akibat-daun-jelatang-niru
[6] B. Nikmatur, “7 Jenis Tanaman Jelatang yang Sebabkan Kulit Gatal,” jatimtimes.com. [Online]. Available: https://jatimtimes.com/baca/321644/20240927/082900/7-jenis-tanaman-jelatang-yang-sebabkan-kulit-gatal?utm_source=chatgpt.com
[7] U. STEKOM, “Jelatang ayam,” p2k.stekom.ac.id. [Online]. Available: https://p2k.stekom.ac.id/ensiklopedia/Jelatang_ayam
[8] M.Hurley, “Growth dynamics and leaf quality of the stinging trees Dendrocnide moroides and Dendrocnide cordifolia (Family Urticaceae) in Australian tropical rainforest: implications for herbivores,” vol. 48, [Online]. Available: https://www.publish.csiro.au/BT/BT98006
[9] P. Nyoman and Putu Kusuma Negara, “Deteksi Masker Pencegahan Covid19 Menggunakan Convolutional Neural Network Berbasis Android,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 576–583, 2021, doi: 10.29207/resti.v5i3.3103.
[10] D. D. Indriani.S, E. J. A. Sinaga, G. Oktavia, H. Syahputra, and F. Ramadhani, “Identifikasi Tanda Tangan Dengan Menggunakan Metode Convolution Neural Network (CNN),” J-Intech, vol. 12, no. 1, pp. 138–147, 2024, doi: 10.32664/j-intech.v12i1.1273.
[11] I. R. Ramadhani, A. Nilogiri, and A. Qurrota, “Klasifikasi jenis tumbuhan berdasarkan citra daun menggunakan metode convolutional neural network,” J. Smart Teknol., vol. 3, no. 3, pp. 249–260, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST
[12] H. Mahmud Nawawi, A. Baitul Hikmah, A. Mustopa, and G. Wijaya, “Model Klasifikasi Machine Learning untuk Prediksi Ketepatan Penempatan Karir,” J. SAINTEKOM, vol. 14, no. 1, pp. 13–25, 2024, doi: 10.33020/saintekom.v14i1.512.
[13] M. C. A.-B. Gina Purnama Insany, Ivana Lucia Kharisma, “JOURNAL CERITA : Klasifikasi Tanaman Hias Philodendron Berdasarkan Citra,” vol. 8, no. 225, pp. 136–144, 2024.
[14] I. Perlindungan and Risnawati, “Pengenalan Tanaman Cabai Dengan Teknik Klasifikasi Menggunakan Metode CNN,” Semin. Nas. Mhs. ilmu Komput. dan Apl., pp. 15–22, 2020.
[15] H. B. Qurrata A’yuni, “Literature Review : Analisis Komparatif Algoritma CNN , KNN , dan SVM untuk Klasifikasi Penyakit Kelapa Sawit,” vol. 0738, no. 4, pp. 6589–6596.
[16] Z. Nasution, “Pemanfaatan Tanaman Jelatang ( Urtica Dioica L .) Pada Kelompok Tani Sekat Dan Dame Deli Serdang,” Sinapmas, vol. 4, no. 2, pp. 246–251, 2022.
[17] S. A. Hauzan, “Penerapan Convolutional Neural Network dalam Pengklasifikasian Citra Gambar Jamur Beracun,” Repository.Uinjkt.Ac.Id, 2023, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/72929%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/72929/1/SHIDQI AKRAM HAUZAN-FST.pdf
[18] M. S. Dr. Arnita, S.Si., M.Si, Faridawaty Marpaung, S.Si., R. C. N. Fitrahuda Aulia, Nita Suryani S.Kom, and S.Kom, COMPUTER VISION DAN PENGOLAHAN CITRA DIGITAL. 2022.
[19] N. Khairunisa, . C., and A. Jamaludin, “Analisis Perbandingan Algoritma Cnn Dan Yolo Dalam Mengidentifikasi Kerusakan Jalan,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4434.
[20] I. D. A. Rachmawati, R. Yunanda, M. F. Hidayat, and P. Wicaksono, “Deep Transfer Learning for Sign Language Image Classification: A Bisindo Dataset Study,” Eng. Math. Comput. Sci. J., vol. 5, no. 3, pp. 175–180, 2023, doi: 10.21512/emacsjournal.v5i3.10621.
[21] A. Hadhiwibowo, S. R. Asri, and R. A. Dinata, “Penerapan Convolutional Neural Network dengan Arsitektur Mobilenetv2 Pada Aplikasi Penerjemah dan Pembelajaran Bahasa Isyarat,” TIN Terap. Inform. Nusant., vol. 4, no. 8, pp. 518–523, 2024, doi: 10.47065/tin.v4i8.4879.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 J-INTECH

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

