Traffic Accident Severity Classification System Using Random Forest Algorithm

Authors

  • Ega Muhammad Atsir Duta Bangsa University, Indonesia
  • Nurmalitasari Nurmalitasari Duta Bangsa University, Indonesia
  • Aprilisa Arum Sari Duta Bangsa University, Indonesia

DOI:

https://doi.org/10.32664/j-intech.v13i02.2089

Keywords:

Classification, Random Forest, System, Traffict Accident

Abstract

Traffic accidents pose a major concern in many countries, including Indonesia, causing considerable losses, injuries, and fatalities each year. Properly classifying the severity of these incidents is essential for authorities to establish preventive actions, apply effective countermeasures, and improve overall road safety. Conventional statistical techniques often fall short in capturing the intricate relationships among multiple influencing variables, such as weather, driver experience, vehicle type, number of vehicles, and casualty figures. To address this limitation, this study proposes a machine learning–based classification method using the Random Forest algorithm, known for its robustness in handling complex and high-dimensional data while identifying nonlinear patterns. The model was trained on a traffic accident dataset from Kaggle and incorporated important features, including driver age group, driving experience, type of vehicle, lighting and weather conditions, type of collision, number of vehicles involved, and casualties. The proposed system achieved 81% accuracy, 75% weighted precision, 81% weighted recall, and a weighted F1-score of 77%, demonstrating reliable performance in predicting accident severity levels Slight Injury, Serious Injury, and Fatal Injury. And providing useful insights for data-driven planning in traffic safety management.

References

[1] Baiq Sri Susanti, Ristu Haiban Hirzi, Siti Arni Wulandhya, Siti Hariati Hastuti, and Alissa Chintyana, “Analisis Klasifikasi Kecelakaan Lalu Lintas Lombok Timur Berdasarkan Tingkat Keparahan Korban Kecelakaan Menggunakan Metode Support Vector Machine (SVM) dan Bootstrap Aggregating (Bagging),” J. Eksbar, vol. 1, no. 1, pp. 1–8, Jul. 2024, doi: 10.29408/eksbar.v1i1.27123.

[2] and U. L. M. B. Rusandi, A. Bisnis, “Penerapan Digitalisasi Camera Analytic Guna Meningkatkan Tingkat Kepatuhan Driver Dan Menurunkan Tingkat Kecelakaan Dump Truck ( DT ) Di Jalan Hauling Batubara PT . XYZ”.

[3] N. S. Kusumastutie, B. Patria, S. Kusrohmaniah, and T. D. Hastjarjo, “A review of accident data for traffic safety studies in Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1294, no. 1, p. 012012, Jan. 2024, doi: 10.1088/1755-1315/1294/1/012012.

[4] H. Yuan and G. Li, “A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation,” Data Sci. Eng., vol. 6, no. 1, pp. 63–85, Mar. 2021, doi: 10.1007/s41019-020-00151-z.

[5] F. I. Rahman, L. Lukman, and H. Hildayati, “Sistem Klasifikasi Kerusakan Jalan Metode Machine Learning dengan Algoritma K-Means dan Random Forest,” Arus J. Sains dan Teknol., vol. 3, no. 1, pp. 116–126, Jun. 2025, doi: 10.57250/ajst.v3i1.1212.

[6] H. A. Salman, A. Kalakech, and A. Steiti, “Random Forest Algorithm Overview,” Babylonian J. Mach. Learn., vol. 2024, pp. 69–79, Jun. 2024, doi: 10.58496/BJML/2024/007.

[7] A. R. Andhika, “Machine Learning Dalam Pengembangan Perangkat Lunak”.

[8] Z. F. Olcay, G. Ünkaya, and G. D. Dursun, “The effect of OHS costs on accident severity rate in the construction industry,” Bus. Manag. Stud. An Int. J., vol. 9, no. 3, pp. 1076–1087, Sep. 2021, doi: 10.15295/bmij.v9i3.1877.

[9] Mohammad Fokhrul Islam Buian, Ramisha Anan Arde, Md Masum Billah, Amit Debnath, and Iqtiar Md Siddique, “Advanced analytics for predicting traffic collision severity assessment,” World J. Adv. Res. Rev., vol. 21, no. 2, pp. 2007–2018, Feb. 2024, doi: 10.30574/wjarr.2024.21.2.0704.

[10] A. N. et Al, “Pendekatan Descriptive Analysis Berbasis Data Untuk Mengevaluasi Kecelakaan Lalu Lintas Di Indonesia”.

[11] and M. K. A. Saxena, M. Dhadwal, “Indian Crop Production: Prediction And Model Deployment Using Ml And Streamlit”.

[12] A. Azhar, N. M. Ariff, M. A. A. Bakar, and A. Roslan, “Classification of Driver Injury Severity for Accidents Involving Heavy Vehicles with Decision Tree and Random Forest,” Sustainability, vol. 14, no. 7, p. 4101, Mar. 2022, doi: 10.3390/su14074101.

[13] T. K. Titus and M. Jajuli, “Clustering Data Kecelakaan Lalu Lintas di Kecamatan Cileungsi Menggunakan Metode K-Means,” Gener. J., vol. 6, no. 1, pp. 1–12, Jan. 2022, doi: 10.29407/gj.v6i1.16103.

[14] and A. F. A. A. A. Zuhri, R. Kusumawati, M. A. Yaqin, “Development of Academic Community Recommendation System Using Content-Based Filtering at UIN Malang Informatics Engineering Study Program”.

[15] H. L. Maharani and S. Zaman, “Implementasi Metode Random Forest untuk Peningkatan Efisiensi Penilaian Status Uji Kelayakan Kendaraan Bermotor di Kota Malang,” J. SAINTEKOM, vol. 15, no. 1, pp. 106–117, Mar. 2025, doi: 10.33020/saintekom.v15i1.751.

[16] C. AVCI, M. BUDAK, N. YAĞMUR, and F. BALÇIK, “Comparison between random forest and support vector machine algorithms for LULC classification,” Int. J. Eng. Geosci., vol. 8, no. 1, pp. 1–10, Feb. 2023, doi: 10.26833/ijeg.987605.

[17] N. S. et Al, “Analysis of the Effectiveness of Traditional and Ensemble Machine Learning Models for Mushroom Classification”.

[18] N. Chandrasekhar and S. Peddakrishna, “Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization,” Processes, vol. 11, no. 4, p. 1210, Apr. 2023, doi: 10.3390/pr11041210.

[19] Jude Chukwura Obi, “A comparative study of several classification metrics and their performances on data,” World J. Adv. Eng. Technol. Sci., vol. 8, no. 1, pp. 308–314, Feb. 2023, doi: 10.30574/wjaets.2023.8.1.0054.

[20] H. Dani, “Review on Frameworks Used for Deployment of Machine Learning Model,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 2, pp. 211–215, Feb. 2022, doi: 10.22214/ijraset.2022.40222.

Downloads

Published

2025-12-19