Comparison of Naïve Bayes and K-NN in Sentiment Analysis on Twitter Regarding the Victory of Candidate Pair 02

Authors

  • Alfira Fitri Nur Azizah Sistem Informasi, Universitas Merdeka Malang, Indonesia
  • Viry Puspaning Ramadhan Sistem Informasi, Universitas Merdeka Malang, Indonesia

DOI:

https://doi.org/10.32664/j-intech.v12i02.1305

Keywords:

Comparison, K-NN, Naïve Bayes, Sentiment Analysis

Abstract

The 2024 Presidential and Vice Presidential Election stands out as a highly awaited political event by the people of Indonesia. The vote counts result, or real count, of the 2024 election have sparked a variety of reactions, both supportive and opposing, especially on social media platforms like Twitter, due to the lead of candidate pair number 02. This study utilizes Twitter as a data source for opinion interpretation. The Naïve Bayes and K-NN were chosen in this study, and their performances are tested and compared. The research results present Naïve Bayes with an accuracy rate of 87.35% +/- 1.81% (micro average: 87.35%), while K-NN algorithm achieved an accuracy rate of 69.68% +/- 3.14% (micro average: 69.68%) using a data partition ratio of 90:10. The analysis results indicate that Naïve Bayes is more effective than K-Nearest Neighbor.

References

Ghufron, M. R., Mahabbataka Arsyada, M. F., Lukman, M. R., Haryono Putra, Y. A., & Rakhmawati, N. A. (2023). Analisis Sentimen Pengguna Twitter Terhadap Pemilu 2024 Berbasis Model XLM-T. J-Intech, 11(2), 307–315. https://doi.org/10.32664/j-intech.v11i2.1013

Juanita, S. (2020). Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes. Jurnal Media Informatika Budidarma, 4(3), 552. https://doi.org/10.30865/mib.v4i3.2140

Khotimah, A. C., & Utami, E. (2022). Comparison Naive Bayes Classifier, K-Nearest Neighbor, and Support Vector Machine in the classification of individual on twitter account. Jurnal Teknik Informatika (JUTIF), 3(3), 673–680.

Maulana, G. I., Fridawati, P. I., & Masruroh, H. (2022). Pemilu 2024: Pesta demokrasi akbar pembangkit kondisi ekonomi pasca pandemi. Jurnal Integrasi Dan Harmoni Inovatif Ilmu-Ilmu Sosial (JIHI3S), 2(8), 751–757. https://doi.org/10.17977/um063v2i8p751-757

Mufidah, F. S., Winarno, S., Alzami, F., Udayanti, E. D., & Sani, R. R. (2022). Analisis Sentimen Masyarakat Terhadap Layanan Shopeefood Melalui Media Sosial Twitter Dengan Algoritma Naïve Bayes Classifier. JOINS (Journal of Information System), 7(1), 14–25. https://doi.org/10.33633/joins.v7i1.5883

Murni, M., Riadi, I., & Fadlil, A. (2023). Analisis Sentimen HateSpeech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier (NBC). JURIKOM (Jurnal Riset Komputer), 10(2), 566. https://doi.org/10.30865/jurikom.v10i2.5984

Mutiara, T. A., Alkhalifi, Y., Mayangky, N. A., & Gata, W. (2020). Analisis Sentimen Opini Publik Mengenai Larangan Mudik pada Twitter Menggunakan Naïve Bayes. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, Vol. 6, p. 85. https://doi.org/10.24014/coreit.v6i2.9727

Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253

Palepa, M. J., Pratiwi, N., & ... (2024). Analisis Sentimen Masyarakat Tentang Pengaruh Politik Identitas Pada Pemilu 2024 Terhadap Toleransi Beragama Menggunakan Metode K-Nearest Neighbor. JIPI (Jurnal …, 9(1), 389–401.

Puad, S., Garno, G., & Susilo Yuda Irawan, A. (2023). Analisis Sentimen Masyarakat Pada Twitter Terhadap Pemilihan Umum 2024 Menggunakan Algoritma Naïve Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1560–1566. https://doi.org/10.36040/jati.v7i3.6920

Ramadhani, S. H., & Wahyudin, M. I. (2022). Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(4), 526–534. https://doi.org/10.35870/jtik.v6i4.530

Supriyanto, J., Alita, D., & Isnain, A. R. (2023). Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(1), 74–80. https://doi.org/10.33365/jatika.v4i1.2468

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, & Fitri Nurapriani. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo, 10, 1–7. https://doi.org/10.35134/komtekinfo.v10i1.330

Syarifuddinn, M. (2020). Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn. INTI Nusa Mandiri, 15(1), 23–28. https://doi.org/10.33480/inti.v15i1.1347

Wahyu Andrian, B., Adline Twince Tobing, F., Zuhdi Pane, I., & Kusnadi, A. (2023). Implementation of Naïve Bayes Algorithm in Sentiment Analysis of Twitter Social Media Users Regarding Their Interest to Pay the Tax. International Journal of Science, Technology & Management, 4(6), 1733–1742. https://doi.org/10.46729/ijstm.v4i6.1015

Published

2024-12-19