Comparison Of Classification Algorithm In User Sentiment Analysis Of Getcontact Application In Online Fraud Prevention

COMPARISON OF CLASSIFICATION ALGORITHM IN USER SENTIMENT ANALYSIS OF GETCONTACT APPLICATION IN ONLINE FRAUD PREVENTION

Authors

  • Hermanto Hermanto Teknologi Informasi, Politeknik Aisyiyah Pontianak, Indonesia
  • Riza Fahlapi Teknologi Informasi, Universitas Bina Informatika, Indonesia
  • Antonius Yadi Kuntoro Sistem Informasi, Universitas Nusa Mandiri, Indonesia
  • Taufik Asra Rekayasa Perangkat Lunak, Universitas Bina Sarana Informatika, Indonesia

DOI:

https://doi.org/10.32664/j-intech.v12i1.1262

Keywords:

getcontact, naive bayes classifier, online farud, textmining, support vector machine

Abstract

Online fraud refers to various fraudulent acts carried out over the internet with the aim of fraudulently obtaining financial gain or personal information. We need to continue to spread awareness about the importance of security for ourselves and the people we know, where currently there are many different modes of online fraud. One application that is well known to the public is the GetContact application, which is an application designed to provide information about incoming calls, identify spam or fraudulent calls, and provide services related to a list of telephone contacts that have been registered by fellow users of the application. In this research, researchers will analyze the sentiment of comments from users of the Getcontact application by comparing the test results of classification algorithms, namely Naïve Bayes Classifier and SVM. This research process will begin with data sampling using the scrapping technique on Google Playstore and processing data from users of the Getcontact application using RapidMiner. After the preprocessing process and model testing with two textmining methods using algorithms, namely SVM and Naive Bayes, the evaluation and validation results show that Naïve Bayes has a higher level of accuracy than SVM. For Naïve Bayes, the accuracy value reached 82.97% with an AUC value of 0.500, while for SVM, the accuracy value was 78.00% with an AUC value of 0.926. These results show that Naïve Bayes is superior in classifying user comments on the Getcontact application on Google Play as positive and negative comments.

References

Alfauzi, R. Z., Poerbaningtyas, E., & Oktavia, C. A. (2019). Parental Control System Aktivitas Santri Berbasis Android ( Studi Kasus : Pondok Pesantren Mahasiswa Baitul Jannah ). 07, 97–103.

Herianto Herianto. (2018). Penerapan Text-Mining Untuk Mengidentifikasi Pengguna Twitter Terhadap Fenomena Peran DPR RI. JURNAL SAINS & TEKNOLOGI /, 8(2).

Hermanto, Antonius Yadi Kuntoro, & Taufik Asra. (2022). Klasifikasi Keluhan Pengguna Kai Access Untuk Pemesanan Tiket Dengan Algoritma Svm Dan Naïve Bayes. SinkrOn, 6(2).

Hermanto, H., Mustopa, A., & Kuntoro, A. Y. (2020). Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 211–220. https://doi.org/10.33480/jitk.v5i2.1181

Hermanto, Sandra Jamu Kuryanti, & Siti Nur Khasanah. (2019). Comparison of Naïve Bayes Algorithm, C4.5 andRandom Forest for Service Classification OjekOnlin. Journal Publications & Informatics Engineering Research, 3(2).

Kuntoro, A. Y., Asra, T., Sistem, S., Fakultas, I., Informatika, T., Mandiri, U. N., Timur, J., Studi, P., Komputer, T., Teknik, F., Bina, U., Informatika, S., Studi, P., Perangkat, R., Fakultas, L., Informatika, T., Bina, U., & Informatika, S. (2022). Klasifikasi Keluhan Pengguna KAI Access Untuk Pemesanan. JIKA (Jurnal Informatika) Universitas Muhammadiyah Tangerang, 161–169.

Noor Rahmad. (2019). Kajian Hukum terhadap Tindak Pidana Penipuan Secara Online. JURNAL HUKUM EKONOMI SYARIAH, 3(2).

Noviriandini, A., Hermanto, H., & Ayu Ambarsari, D. (2023). Analisis Tingkat Kepuasan Pengguna Aplikasi JMO (Jamsostek Mobile) Menggunakan Algoritma Naive Bayes Classifier. Reputasi: Jurnal Rekayasa Perangkat Lunak, 4(1), 33–37. https://doi.org/10.31294/reputasi.v4i1.1986

Noviriandini, A., Hermanto, H., & Yudhistira, Y. (2022). Klasifikasi Support Vector Machine Berbasis Particle Swarm Optimization Untuk Analisa Sentimen Pengguna Aplikasi Pedulilindungi. JIKA (Jurnal Informatika), 6(1), 50. https://doi.org/10.31000/jika.v6i1.5681

Perkasa, K. B. P. Y., & Eka Purwiantono, F. (2023). Sistem Rekomendasi Jurusan Menggunakan Algoritma Naïve Bayes Gaussian Berbasis Web. J-INTECH, 11(2), 361–370. https://doi.org/10.32664/j-intech.v11i2.1090

Rusmana, A. (2015). Penipuan Dalam Interaksi Melalui Media Sosial (Kasus Peristiwa Penipuan melalui Media Sosial dalam Masyarakat Berjejaring). Jurnal Kajian Informasi Dan Perpustakaan, 3(2), 187. https://doi.org/10.24198/jkip.v3i2.9994

Tinaliah, T., & Elizabeth, T. (2022). Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(4), 3436–3442. https://doi.org/10.35957/jatisi.v9i4.3586

Published

2024-07-09