
401

J-INTECH (Journal of Information and Technology)
Accredited Sinta 4 Ministry of Higher Education, Science and Technology
Republic of Indonesia SK No. 10/C/C3/DT.05.00/2025

E-ISSN: 2580-720X || P-ISSN: 2303-1425

Designing a Web-Based Dropship Management System for PT Xarana Djaya
Motor

Theresia Gabriella1, Bhustomy Hakim2*
1,2Bunda Mulia University, Faculty Technology and Design, Information Systems, Jl. Jalur Sutera Barat Kav 7– 9
Alam Sutera Jakarta, Indonesia

Keywords
Dropship; Information System;
E-Commerce; Laravel; UML; Inventory

Abstract
Indonesia’s online retail is expanding alongside the national
digital economy: 56.1% of global internet users shop on
weekends, with Indonesia ranking ninth at 59.3%. The digital
economy is projected to reach IDR 5,800 trillion by 2030 (USD
360 billion), and in 2023 Indonesia accounted for 40% of
ASEAN’s e-commerce market. In this context, PT Xarana Djaya
Motor, a multi-brand motorcycle spare-parts distributor, runs
a dropshipping model with multiple online sellers. Yet orders
and shipment confirmations are still coordinated via chat and
reentered manually, causing duplicate entries, processing
delays, and limited real-time stock visibility. This study designs
and implements a web-based Dropship Management
Application that centralizes catalog, order, shipment, and
return workflows. Analysis uses UML/ERD; implementation
employs Laravel (PHP) and MySQL. Alpha/black-box testing
validates key rules (one shipment per order) with multiple
items and partial returns at the order-item level. Results
indicate reduced manual handling, improved data accuracy,
and clearer status visibility as supported by centralized
workflows and functional (black-box) acceptance tests. The
work contributes a reusable reference architecture for SMEs,
with future extensions to marketplace API integration,
automated label generation, analytics dashboards, and mobile
access.

*Corresponding Author:
bhakim@bundamulia.ac.id

1. Introduction
Indonesia’s digital economy continues to expand and is accompanied by sustained growth in online retail

activity. Recent statistics report that 56.1% of global internet users shop online on weekends, with Indonesia

ranking ninth at 59.3%[1]. Projections further estimate the national digital economy will reach approximately

IDR 5,800 trillion (USD 360 billion) by 2030, while in 2023 Indonesia accounted for 40% of ASEAN’s e-

commerce market share[2]. These indicators underscore a favorable context for firms to strengthen

operational readiness and information systems supporting online sales at scale.

PT Xarana Djaya Motor is a distributor of multi-brand motorcycle spare parts that collaborates with multiple

online sellers under a dropshipping arrangement, wherein sellers do not hold inventory and instead forward

paid orders to the supplier for direct fulfillment to customers[3]. In practice, however, order details and

shipment confirmations are exchanged via chat applications and reentered manually by an administrator,

leading to duplicated entries, processing delays, and fragmented reporting across sellers. More broadly, many

mailto:bhakim@bundamulia.ac.id

402

SME dropship operations rely on a combination of chat, spreadsheets, and marketplace dashboards that are

not designed for supplier–dropshipper coordination[4]. While these tools are convenient for daily

communication or individual store operations, they exhibit critical shortcomings when used as the primary

backbone for multi-seller fulfillment: (i) data is dispersed across messages, files, and separate seller accounts,

making reconciliation time-consuming; (ii) stock information is not shared as a single real-time reference for

all sellers, increasing the risk of overselling and stock-outs; (iii) order lifecycle tracking (order–shipment–

return) is inconsistent because status updates are recorded in different formats; and (iv) consolidated

reporting and billing across multiple dropshippers cannot be produced reliably without repeated manual

recaps. This fragmentation prevents a single source of truth for stock, order status, returns, and consolidated

billing, thereby increasing inconsistencies, rework, and delayed decision-making.

Prior work highlights the central role of consumer trust and service quality in dropshipping satisfaction[5].

Moreover, demand uncertainty and limited supplier transparency emphasize the need for real-time inventory

visibility to inform selling decisions and prevent stock-outs[6]. Given these conditions, the company requires

an integrated web-based information system that serves as a hub between the firm and its dropshippers. Core

requirements include digitized order capture and status tracking, automatic stock updates, centralized product

information, and structured logs of shipments and returns that are accessible to both administrators and

sellers. Such a system is expected to reduce data entry errors, shorten processing time, and improve

operational transparency, thereby enhancing seller experience and supporting the onboarding of new

dropshippers.

To address the problem, this study designs and implements a dropship management application using a

structured, sequential Waterfall process analysis, design, implementation, testing, and maintenance—as an

appropriate choice for relatively stable requirements[7]. The solution is realized with PHP (Laravel) following

the Model–View–Controller paradigm and a MySQL relational database to enforce consistency and

maintainability in development[8]. The objectives are (i) to engineer a system aligned with PT Xarana Djaya

Motor’s operational needs and (ii) to evaluate it through alpha/black-box testing against specified business

rules. The results aim to provide a practical reference for small-to-medium enterprises operating dropship-

based e-commerce in Indonesia.

2. Research Method
This study adopts the SDLC Waterfall model as the sole development methodology to engineer the dropship

management system for PT Xarana Djaya Motor. Waterfall proceeds sequentially through clearly delimited

phases requirements analysis, system design, implementation, testing, and maintenance with formal reviews

and deliverables at the end of each phase[9]. It is chosen for its structured control, document-driven handoffs,

and suitability to relatively stable requirements, enabling traceability from needs to verified functionality[10].

Figure 1. Research Method

The study began with a structured requirements analysis focusing on the comprehensive elicitation of system

needs so that the resulting application would be maximally useful to its users[11]. Data were gathered through

403

a literature review of books, journals, and relevant scientific articles; direct observation at PT Xarana Djaya

Motor to understand operational workflows and bottlenecks; and semi-structured interviews with key

stakeholders (the commissioner and the operations manager). Analysis of the as-is process revealed several

issues: vulnerability to recording errors and delays because orders were handled manually and were not

integrated; the absence of a centralized repository for dropshipper, transaction, and sales-performance data,

which hindered monitoring and evaluation; and manual reporting that often produced inconsistencies between

stock figures and actual conditions, thereby slowing decision-making.

The system and software design phase translated these requirements into formal models. Business processes

were modeled using Business Process Modeling Notation (BPMN) to capture the intended (to-be) operational

flow[12]. Functional behavior and structure were specified with Unified Modeling Language (UML), including

a use-case diagram to outline actor–system interactions, activity diagrams to detail control flows[13]. A

normalized Entity–Relationship Diagram (ERD) defined the database schema supporting core entities and their

relationships[14].

Implementation realized the design into a working web application. Development consisted of coding with the

Laravel framework (PHP) alongside HTML, CSS, and Bootstrap, using a modern code editor (e.g., Visual Studio

Code) and auxiliary tools as needed. Unit testing accompanied construction to verify each module against its

specification and to ensure proper handling of inputs, validation rules, and data integrity[15].

Integration and system testing evaluated the end-to-end behavior of the integrated system to determine

whether it met the specified functions or required corrective actions. Alpha testing was conducted using a

black-box approach, deriving test cases directly from functional requirements and business rules to validate

inputs, outputs, and state transitions without inspecting internal code[16]. Test outcomes were analyzed to

confirm alignment with the previously defined requirements and design specifications, and any defects were

addressed accordingly[17]. Consistent with a Waterfall-style SDLC, the project was executed through the

testing phase; maintenance activities are planned as future work. In addition, this study proposes

supplementary quantitative indicators to be collected during beta deployment.

3. Result and Discussions
Following the Waterfall process, the presentation proceeds from modeling outputs to implementation evidence

and evaluation. The as-is business process is first analyzed with BPMN to identify bottlenecks caused by chat-

based ordering, duplicated re-entry, and fragmented stock visibility across sellers[18]. hese findings align with

prior observations that fragmented tools (chat/spreadsheets/marketplace dashboards) limit end-to-end

coordination and weaken inventory transparency in distributed e-commerce operations, increasing rework

and decision latency. Therefore, the proposed solution is formalized using UML use case, activity, and ERD to

translate the identified gaps into enforceable system functions and a controlled data backbone.

Figure 2 summarizes the system scope through two roles—Admin and Dropshipper—clearly separating

responsibilities and access boundaries. Beyond describing features, this model operationalizes process

integration by ensuring that catalog control, order status transitions, return handling, and consolidated billing

are managed within one supplier-governed workflow. This is significant because many dropship

implementations and marketplace-native flows typically emphasize ordering and basic tracking, while returns

and reconciliation remain handled externally (e.g., chats or spreadsheets), which reduces traceability and

increases disputes. The include/extend relations represent conditional controls (e.g., proof-of-payment and

reminders) consistent with use-case models as interaction contracts that support business rule enforcement

and accountability[19].

404

Figure 2. Usecase Diagram Website Dropship Management

Figure 3 (Activity Diagram) explains the end-to-end operational flow from product onboarding to fulfillment,

returns, and billing. Interpreting this model, the key contribution is the explicit visibility of decision points and

parallel activities that previously occurred informally, enabling identification of operational risk areas (e.g.,

bulk upload validation, status update dependencies, and return approval gates). Such explicit control points

strengthen traceability and standardization, which are commonly cited as prerequisites for consistent

execution in integrated e-commerce processes[20].

Figure 3. Activity Diargam Website Dropship Management

405

Figure 4. ERD Website Dropship Management

Figure 4 presents the ERD for an integrated dropship workflow, translating the end-to-end operational process

into a normalized and auditable data model[21]. The design ties Dropshipper–Orders–Order Items to Products

and Category, enforces one Shipment per order, and supports item-level partial returns. Importantly, billing

(Tagihan and Detail_tagihan) and multi-marketplace management (Dropshipper_platform to Platform) are

incorporated to enable consolidated reconciliation—an aspect frequently treated as separate or loosely

controlled in earlier dropship schemas that focus on order/track only.

Figure 5. Page add product admin

Figure 5 (Admin – Add Product) illustrates how the system establishes a controlled “product master” by

capturing canonical catalog attributes (e.g., SKU, name, category, cost, minimum selling price, weight, stock,

status, and description) and validating product images through explicit constraints (format, size, and count). In

the context of dropship operations that often depend on chat messages and spreadsheets for product updates,

406

this interface is significant because it standardizes catalog data at the supplier side, reducing ambiguity in item

identity and listing details when the same products are marketed by multiple dropshippers.

Figure 6. Page stok admin

Figure 6 presents the Admin Stock page, which summarizes inventory through four cards (active, archived, out-

of-stock, and low-stock) and provides quick filters plus a search field by product name or SKU. The table lists

items with SKU, current stock, and an editable minimum-stock threshold that triggers low-stock flags;

chips/badges mark products below the threshold. Action controls enable archiving or re-enabling items,

offering role-based control over catalog visibility. Edits are persisted to the inventory tables and reflected in

dropshipper listings and exports, supporting timely monitoring and replenishment decisions.

Figure 7. Page payment admin

Figure 7 depicts the Admin Payment page, which consolidates billable transactions for a selected dropshipper

and period. Orders appear on the left and return adjustments on the right; negative amounts from approved

returns offset the invoice total. Tabs (unbilled, invoiced, paid) track billing status, while checkboxes allow the

administrator to include or exclude specific entries before generating an invoice. The “Create Billing Invoice”

action compiles the selected items into an invoice record and updates lifecycle states for subsequent

reconciliation.

Figure 8. Page invoice

407

Figure 8 shows the Admin Billing–Invoice view for a selected dropshipper after an invoice has been issued. The

interface renders the invoice inline with metadata (invoice number, issue date, due date, customer identity)

and provides state tabs (unbilled, invoiced, paid) plus actions to acknowledge receipt of payment or download

the payer’s proof. The detail table aggregates billable components such as dropship orders and service fees

with counts of orders/products, subtotals, and a computed grand total. Confirming payment transitions the

invoice to paid, locks the associated line items, and records an audit entry for reconciliation and reporting.

Figure 9. Page add order

Figure 9 shows the order form captures the external order number, courier, and marketplace tracking number,

with an optional PDF upload of the receipt; a priority flag elevates urgent orders in downstream queues. Line-

item rows bind SKUs to quantities and unit prices, compute subtotals and total weight, and validate required

fields. Submission persists a single order header with multiple items, aligning with the rule of one shipment

per order and preparing the record for fulfillment and billing.

Figure 10. Page add return order

Figure 10 the return interface begins with order selection, then renders the associated items so the user can

mark one or more lines and specify per-item return quantities, thereby enabling partial returns at the order-

item level. Required fields include the return tracking number, return date–time, and a reason field;

attachments accept a PDF receipt and optional photographic evidence. On submission, the system records a

structured return request and updates order/ledger states for subsequent review and invoice adjustment.

408

Tabel 1. Blackbox Testing

No
Tested

Page
Test Data Expected Result Output

Test
Results

User
Fedback/Usabil

ity

1
Admin –

Add
Product

Fill SKU, Name,
Category, Cost,

Minimum Price,
Weight, Stock, Status,
Description; upload
3–9 images ≤2 MB

Inputs validated;
product saved;

appears in
catalog

Product
created

and listed
Valid

Clear form;
required-field

indicators help
completion

2
Admin –

Stock

Change minimum-
stock threshold; use

search and quick
filters; archive/enable

item

Counters
(active/archived

/out-of-
stock/low-stock)

and badges
update; item

visibility toggles

Inventory
updated;

flags
refreshed

Valid
Fast controls and

responsive
search

3

Admin –
Payment

(Build
Invoice)

Select dropshipper &
period; tick orders
and returns; click

Create Billing Invoice

Invoice
generated with

selected entries;
returns reduce

total

Invoice
record
created

Valid
Separation of

orders/returns
eases selection

4

Admin –
Billing /
Invoice

View

Review invoice; click
Receive Payment;
download proof

Status changes to
Paid; line items

locked; proof
available

Invoice
marked

paid
Valid

Inline invoice
layout is
readable

5

Dropshipp
er –

Product
Display

Search by SKU/name;
filter by

category/status;
select items;

download

Filtered listing;
catalog/export

file downloaded

Filtered
list &

export file
Valid

Informative
cards; badges aid

scanning

6
Dropshipp

er – Add
Order

Enter Order No.,
Courier, Tracking; add
≥2 items; upload PDF

receipt

Order saved (one
header, multiple

items); totals
and weight
computed

Order
created

with totals
Valid

Auto-calculation
improves
accuracy

All scenarios executed as valid, with no high-severity defects. Critical rules single shipment per order, partial

returns at the order-item level, low-stock thresholding, and invoice aggregation with return offsets behaved as

specified. Usability notes were positive (clear forms, responsive filters, informative badges and totals),

indicating that the implemented interfaces support accurate data entry and efficient navigation. These

outcomes satisfy the acceptance criteria for the alpha phase and provide a reliable basis for subsequent

deployment and/or broader user testing.

Tabel 2. Supplementary quantitative indicators

Indicator How to measure
Baseline

(Before) [B]
With System

(After) [A]
Calculation

Manual
entries per

Count typed fields
required end-to-
end, including re-

B1 = 44.2 A1 = 18.1 Reduction =
(B1 − A1)/B1 ×
100%

(44.2−18.1)/44.2
= 59.1% fewer
entries

409

Indicator How to measure
Baseline

(Before) [B]
With System

(After) [A]
Calculation

order (fields
typed)

entry across
chat/Excel/system

Processing
time per order
(minutes)

Stopwatch time
from order
submission to
‘Perlu Proses’ to
‘dikirim’ status

B2 = 21.4 min A2 = 11.3 min Reduction =
(B2 − A2)/B2 ×
100%

(21.4−11.3)/21.4
= 47.2% faster

Table 2 shows clear efficiency gains after the system was implemented. Manual entries per order decreased

from 44.2 (B1) to 18.1 (A1), a 59.1% reduction, indicating less duplicate typing across tools. Processing time

per order dropped from 21.4 minutes (B2) to 11.3 minutes (A2), a 47.2% improvement, reflecting faster status

progression to “dikirim.”

Combined with the black-box testing results, these findings confirm that the system not only functions correctly

according to the test scenarios, but also delivers measurable operational improvements by reducing manual

work and accelerating order processing.

4. Conclusions and Future Works
This study engineered and validated a web-based dropship management system for PT Xarana Djaya Motor

using a Waterfall process and a model-driven specification (BPMN, UML, ERD) implemented on Laravel–

MySQL. Alpha black-box testing and Supplementary quantitative indicators across administrator and

dropshipper workflows met the acceptance criteria single shipment per order, partial returns at the order-item

level, inventory thresholding, and invoice aggregation with return offsets and the results indicate reduced

manual handling, improved data accuracy, and clearer status visibility along the order–shipment–return

lifecycle. The resulting specification and data model constitute a reusable reference architecture for SMEs

operating dropship-based commerce, though the present scope excludes automated payment integration,

direct marketplace APIs, and post-deployment maintenance beyond the alpha window.

Future work should prioritize marketplace API integration (e.g., Shopee, TikTok Shop, Tokopedia) for

synchronized orders, stock, and tracking; automated shipping-label generation with tighter fulfillment links;

analytics dashboards with KPI monitoring and alerting; and mobile access (PWA or native) to support on-the-

go operations. Additional enhancements include real-time notifications with finer-grained RBAC, as well as

broader evaluation through performance and security testing, usability studies with larger cohorts, and a

subsequent corrective/adaptive maintenance phase during real-world deployment.

5. References
[1] We Are Social, “Global Digital Report 2025,” 2025. [Online]. Available: https://wearesocial.com/

[2] DataReportal, “Digital 2025: Indonesia.” Accessed: Oct. 07, 2025. [Online]. Available:
https://datareportal.com/

[3] A. Waworuntu, “Rancang Bangun Aplikasi e-Commerce Dropship Berbasis Web,” Ultim. J. Tek. Inform.,
vol. 12, no. 2, pp. 118–124, 2020, doi: 10.31937/ti.v12i2.1823.

[4] A. De, “‘ Business on WhatsApp is tough now — but am I really a businesswoman ?’ Exploring Challenges
with Adapting to Changes in WhatsApp Business”, doi: 10.1145/3706598.3713988.

[5] A. Aburub, A. Aburub, A. Aburub, A. G. Ben Hamida, and F. Khanfar, “The Impact of Dropshipping Service
Quality on Customer Satisfaction in Saudi Arabia: The Mediating Role of Customer Trust. A Study on E-
Commerce Users,” J. Posthumanism, vol. 5, no. 4, pp. 1576–1598, 2025, doi: 10.63332/joph.v5i4.1292.

410

[6] N. Kim, B. Montreuil, and W. Klibi, “Inventory availability commitment under uncertainty in a
dropshipping supply chain,” Eur. J. Oper. Res., vol. 302, no. 3, pp. 1155–1174, 2022, doi:
10.1016/j.ejor.2022.02.007.

[7] B. Hakim and L. Maria, “Sistem Pengelolaan Transaksi In and Out Terintegrasi Berbasis Website,” Progr.
Stud. Sist. Informasi, Univ. Bunda Mulia, vol. 17, no. 1, pp. 141–162, 2025.

[8] M. Saefudin, D. A. Megawaty, D. Alita, R. Arundaa, and E. Tenda, “Penerapan Framework Laravel Pada
Sistem Informasi Posyandu Berbasis Website,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 4, no. 2,
pp. 213–220, 2023, doi: 10.33365/jatika.v4i2.2600.

[9] R. Darmawan and B. Hakim, “Perancangan Sistem Website E-Commerce Pada Pt. Natura Indoland
Dengan Framework Codeigniter,” JBASE - J. Bus. Audit Inf. Syst., vol. 5, no. 2, pp. 9–18, 2022, doi:
10.30813/jbase.v5i2.3776.

[10] B. Hakim et al., “PERANCANGAN APLIKASI MANAJEMEN BENGKEL MOTOR BERBASIS IOS,” Progr. Stud.
Sist. Informasi, Univ. Bunda Mulia, vol. 9, no. 3, pp. 5036–5044, 2025.

[11] A. B. Paksi, N. Hafidhoh, and S. K. Bimonugroho, “Perbandingan Model Pengembangan Perangkat Lunak
Untuk Proyek Tugas Akhir Program Vokasi,” J. Masy. Inform., vol. 14, no. 1, pp. 70–79, 2023, doi:
10.14710/jmasif.14.1.52752.

[12] P. Satria and G. Testiana, “Pemodelan Proses Pengoprasian Sistem Building Automation System (BAS)
di Bandara SMB II Palembang Menggunakan Business Process Modelling Notation (BPMN),” pp. 151–
158, 2025, doi: 10.31284/p.snestik.2025.7655.

[13] S. Ramdany, “Penerapan UML Class Diagram dalam Perancangan Sistem Informasi Perpustakaan
Berbasis Web,” J. Ind. Eng. Syst., vol. 5, no. 1, 2024, doi: 10.31599/2e9afp31.

[14] Rizki Ridwan, Nunu Kustian, and Erlin Windia Ambarsari, “Peran Data Store Dalam Mempresentasikan
Hubungan Data Flow Diagram Ssadm Dengan Entity Relationship Diagram,” J. Ilm. Tek. Mesin, Elektro
dan Komput., vol. 2, no. 2, pp. 83–90, 2022, doi: 10.51903/juritek.v2i2.412.

[15] A. Praniffa et al., “Pengujian Black Box Dan White Box Sistem Informasi Parkir Berbasis Web Black Box
And White Box Testing Of Web-Based Parking Information System,” J. Test. Dan Implementasi Sist. Inf.,
vol. 1, no. 1, pp. 1–16, 2023.

[16] T. Menora, C. H. Primasari, Y. P. Wibisono, T. A. P. Sidhi, D. B. Setyohadi, and M. Cininta, “Implementasi
Pengujian Alpha dan Beta Testing Pada Aplikasi Gamelan Virtual Reality,” KONSTELASI Konvergensi
Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 48–60, 2023, doi: 10.24002/konstelasi.v3i1.6625.

[17] U. Saputra, B. R. Nasution, A. A. Anggara, R. S. Qaisa, A. E. Jakfar, and N. Astrianda, “Analisa Pengujian
Sistem Informasi Website E-Commerce Bali-Store Menggunakan Metode Black Box Testing,” J. Teknol.
Inf., vol. 2, no. 2, pp. 95–102, 2023, [Online]. Available: http://jurnal.utu.ac.id/JTI

[18] Y. Muharrama and A. Ginantaka, “Analisis Dan Desain Sistem Pengolahan Bioetanol Dari Sabut Kelapa
Dengan Pendekatan Business Process Model And Notation (BPMN),” vol. 4, pp. 3256–3268, 2025.

[19] D. B. Yonathan and Y. M. Geasela, “Perancangan Sistem Transaksi Berbasis Website Menggunakan
Metode Waterfall pada PT Josua,” Adopsi Teknol. dan Sist. Inf., vol. 4, no. 1, pp. 37–63, 2025, doi:
10.30872/atasi.v4i1.2963.

[20] B. Hnatkowska and M. Cebinka, “ACTIVITY DIAGRAM GENERATION BASED ON USE-CASE TEXTUAL
SPECIFICATION,” Comput. Informatics, vol. 38, pp. 1320–1340, 2019, doi: 10.31577/cai.

[21] M. Farid Al Jabbar, F. Adelina Harahap, and J. Immanuel Sijabat, “ANALISIS PERBANDINGAN
PEMANFAATAN ERD UNTUK PROSES PEMBUATAN PROGRAM,” J. Inform. Utama, vol. 3, no. 1, pp. 12–
22, 2025.

