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Abstract  
Software defect prediction (SDP) plays a crucial role in 
improving software quality by enabling the early detection of 
faulty modules during the development phase. However, class 
imbalance within software defect datasets remains a 
significant challenge that adversely impacts prediction 
accuracy. This study aims to address this issue by 
implementing ensemble learning methods—specifically 
Bagging and AdaBoost—combined with the C4.5 decision tree 
algorithm to enhance classification performance. The research 
utilized five well-known datasets from the NASA MDP 
Repository (CM1, JM1, KC1, KC2, and PC1), each containing 
comprehensive software metrics and defect labels. The 
methodology involved several stages: data preprocessing 
(normalization and discretization), model training using 10-
fold cross-validation, and performance evaluation through 
metrics such as accuracy and Area Under the Curve (AUC). 
Results indicate that both ensemble methods outperformed 
the standalone C4.5 algorithm across all datasets. Notably, the 
AdaBoost + C4.5 model yielded the highest accuracy in most 
scenarios, with the PC1 dataset reaching 97.20% accuracy. In 
comparison, C4.5 alone and C4.5 with Bagging recorded lower 
values, demonstrating the significant impact of adaptive 
weighting in AdaBoost. These findings affirm that ensemble 
learning, particularly AdaBoost, effectively mitigates the 
impact of class imbalance and improves prediction 
performance in SDP tasks. 
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1. Introduction 
In software development, the occurrence of defects is inevitable, stemming from both logical and semantic 

errors during code implementation. These defects are predominantly attributed to human errors during the 

programming process. When such flawed code is executed, it may lead to system malfunctions or even total 

failure [1]. To reduce the cost and workload involved in the development and maintenance of software systems, 

it is essential to adopt proactive strategies that can anticipate potential defects at an early stage[2] One such 
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critical strategy is software defect prediction (SDP), which enables early detection of potentially faulty modules. 

This allows developers to allocate resources more effectively, ensuring the delivery of high-quality software 

that supports seamless business operations [3]. 

The primary objective of software defect prediction is to enhance software quality by minimizing the 

occurrence of defects during execution. By identifying high-risk modules, testing efforts can be more efficiently 

directed, thereby reducing testing costs and improving overall development efficiency [4]. 

However, one of the major challenges in implementing defect prediction is class imbalance in software metrics 

datasets [5] This issue arises when the number of defective modules (minority class) is significantly lower than 

non-defective modules (majority class), which negatively impacts model accuracy and reduces the model’s 

ability to detect actual defective modules [6],[7] Imbalanced datasets often lead machine learning models to be 

biased toward the majority class, resulting in poor performance on the minority class [8] 

To address this problem, two major approaches are commonly employed: data-level techniques, such as 

sampling, and algorithm-level techniques, such as ensemble learning [9]. This study focuses on the algorithm-

level approach by enhancing learning algorithms or integrating multiple models through ensemble methods to 

improve classification reliability and accuracy[10] Ensemble techniques are known to outperform single 

classification models by aggregating multiple classifiers trained on the same data. In addition to improving 

accuracy, ensemble methods have proven more effective in handling imbalanced data than resampling 

techniques [11]. 

Among ensemble approaches, Bagging and Boosting are two widely used strategies. Bagging (Bootstrap 

Aggregating) reduces overfitting by generating multiple subsets of training data, training separate models on 

each subset, and combining their predictions—typically through averaging or voting—to reduce variance [12]. 

Bagging is particularly effective with unstable classifiers such as Decision Trees, which are sensitive to small 

changes in training data. Applying Bagging to the C4.5 algorithm has demonstrated improved classification 

accuracy compared to using a single model [13]. 

On the other hand, Boosting aims to minimize prediction error by combining multiple weak learners—models 

that perform only slightly better than random guessing—into a strong composite model[14],[15]. One of the 

most prominent Boosting algorithms is Adaptive Boosting (AdaBoost), a supervised learning technique 

commonly used in data mining to build classification models and address class imbalance problems [16],[17] 

AdaBoost assigns varying weights to training instances during each iteration, emphasizing those that are 

misclassified, thus guiding the learning process toward harder cases [18]. 

In addition to Bagging and AdaBoost, this study also utilizes the C4.5 decision tree algorithm as a base learner. 

C4.5 is a well-established classification algorithm that constructs decision trees based on entropy and 

information gain, offering high interpretability and support for both discrete and continuous attributes [19]. 

Despite its advantages, C4.5 exhibits instability under varying data conditions, which can affect its accuracy 

[20]. Therefore, integrating it with ensemble methods such as AdaBoost and Bagging can significantly improve 

its performance. Previous studies have reported that such integration leads to notable improvements in 

accuracy, precision, recall, and F1-score compared to using C4.5 alone [21],[22]. 

The dataset used in this research is sourced from the NASA MDP Repository, specifically the PROMISE datasets 

(CM1, JM1, KC1, KC2, and PC1), which are widely adopted in software defect prediction research due to their 

comprehensive software metrics and defect labels. This study aims to produce models with significantly 

improved accuracy and AUC (Area Under the ROC Curve) values, providing an effective solution to the class 

imbalance issue in the context of software defect prediction. 

2. Research Method 
This study on software defect prediction is quantitative in nature, as it utilizes numerical data for analysis. The 

research involves several stages, starting with data collection, preprocessing, data splitting, and model training 
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and testing. An ensemble learning approach is then applied by combining the AdaBoost and C4.5 algorithms. 

The final stage includes model validation and evaluation, using accuracy and AUC (Area Under the Curve) as 

performance metrics. The overall research process is illustrated in Figure 1 below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Software Matric 

In the context of software defect prediction, this study adopts a quantitative research approach, as it utilizes 
numerically structured datasets. The research process consists of several stages, including data collection, 
preprocessing, data splitting (training and testing), followed by the implementation of ensemble learning 
approaches using AdaBoost + C4.5 and Bagging + C4.5. The final stage involves evaluating and analyzing the 
performance of the resulting models by measuring their accuracy and AUC (Area Under the ROC Curve). The 
overall research workflow is illustrated in Figure 1 as follows. 

Table 1. Atribut Dataset 

No Fitur Code CM1 JM1 KC1 KC2 PC1 

1 Line Of Code  (loc) v v v v v 

2 cyclomatic compelexity   (v(g)) v v v v v 

3 essensial complexity  (ev(g)) v v v v v 

4 Design Complexity   (iv(g)) v v v v v 

5 Unique Operators  (uniq_Op) v v v v v 

6 Unique Operands  (uniq_Opnd) v v v v v 

7 Total Operators  (total_Op) v v v v v 

8 Total Operands  (TotalOpnd) v v v v v 
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No Fitur Code CM1 JM1 KC1 KC2 PC1 

9 Total Operators dan Operands  (n) v v v v v 

10 volume  (v) v v v v v 

11 program legth  (l) v v v v v 

12 Diviculity  (d) v v v v v 

13 intelegence  (I) v v v v v 

14 Time to write program  (t) v v v v v 

15 Effort to Write Program  (e) v v v v v 

16 Errort Estimate  (b) v v v v v 

17 Count of Statement Lines  (lOCode) v v v v v 

18 Count of Code and Comments Lines  (locCodeAndComment) v v v v v 

19 Count of Blank Lines  (lOBlank) v v v v v 

20 Count of Lines of Comments   (lOComment) v v v v v 

21 Metrik Branch Count   (branchCount) v v v v v 

 

2.2 Preprocessing 

At this stage, normalization is applied to the dataset. The method used transforms numerical data into 

categorical data by dividing the value range of an attribute into several intervals. This process reduces the 

number of attribute values, making the data easier to analyze [22]  

2.3 Split Training and Testing 

Data splitting is a technique used to divide a dataset into several parts, such as training data and testing data, 

and is one of the key factors that influence the performance of classification models in machine learning 

algorithms, The proportion of the split between training and testing data may vary depending on the 

characteristics of each dataset used [23]. Common techniques for dividing datasets include holdout validation 

and k-fold cross validation. The validation process is essential to ensure that each data instance has a fair chance 

of being used for both training and testing purposes, resulting in a more objective and comprehensive model 

evaluation.  

2.4 Algoritm c45 

The C4.5 algorithm is one of the classification methods used to convert large datasets into a decision tree that 

represents a set of classification rules. This algorithm is an extension of the ID3 algorithm and was introduced 

by J. Ross Quinlan [24]. C4.5 offers several advantages, including its ability to handle missing values, process 

continuous (numeric) data, and perform pruning to simplify the decision tree. Additional strengths of C4.5 

include its capability to manage both numerical and categorical attributes, the interpretability of the resulting 

model, and its relatively fast tree construction process compared to other algorithms [25][26] 

The decision tree construction using the C4.5 algorithm follows a systematic series of steps, including selecting 

the best attribute based on the gain ratio, splitting the data into tree branches according to the selected 

attribute, and recursively building the tree structure until the stopping condition is met. 

1. The attributes in the dataset are classified according to their respective target classes to be analyzed 

during the root selection process of the decision tree. 

2.  The attribute with the highest gain value or the lowest entropy, as calculated using Equations (1) and (2), 

is selected as the root node, as it is considered the most informative for the data splitting process. 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑠) = ∑ − 𝑝𝑖 𝑙𝑜𝑔2𝑝𝑖𝑛
𝑖=1   

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) −  ∑
|𝑠𝑖|

𝑠
 𝑥 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑠) 

𝑛

𝑖=1
 

3. The procedure of selecting the attribute with the highest gain value or the lowest entropy is repeated 

recursively for each branch of the tree until all nodes have an appropriate splitting attribute. 

4. The decision tree construction process is terminated when all leaf nodes contain data belonging to a 

homogeneous class, or when no remaining attributes are available for further splitting. 

2.5 Adaboost + C45 Model Evaluation 

In the first experimental scenario, the C4.5 algorithm was implemented in combination with the AdaBoost 

ensemble method. The model training was carried out using the Weka application. AdaBoost plays a key role 

in improving classification performance by assigning different weights to each training instance. These weights 

are adjusted iteratively based on the classification error rate, following the equations presented below. 

Input 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝐷 =  {(𝑥1, 𝑦1). . . . . . (𝑥𝑚, 𝑦𝑚) 

𝐵𝑎𝑠𝑒 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟= L 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇 

Proces 

1. Initialize sample wights 

𝐷𝑡(𝑖) = 1/𝑚 

𝐹𝑜𝑟 𝑖 =  1,2,3. . . . . . . , 𝑚 

𝐹𝑜𝑟  𝑡 = 1,2,3, . . . . . . . . 𝑇 

2. train the base classifier (L), ht using the weighted training data distribution 

𝐷𝑡𝐻𝑡 =  𝐿(𝐷𝑡) 

3. Compute the error of the classifier : 

∈𝑡= ∑ 𝐷𝑡   (𝑖) 

4. Where is the indicator function (1 if true, 0 otherwise)compute the classifier weight : 

𝛼𝑡 =
1

2
 𝐼𝑛(

1−∈ 𝑡

∈ 𝑡
) 

5. Update the sample weights : 

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)

𝑍𝑡
 𝑋 {−𝛼𝑡 𝐴𝑡𝑎𝑢𝛼𝑡} 

Output 

The result of the final classifier is calculated using the following equation: 

𝐻(𝑥)  =  𝑠𝑖𝑔𝑛 (ℎ ∑
𝑇

𝑡 = 1
  𝛼𝑡ℎ𝑡(𝑋)) 

2.6 Bagging + C45 Model Evaluation 

The classification model training in this study was conducted by combining the C4.5 algorithm with the Bagging 

ensemble method. This process involves several systematic steps, in which Bagging generates multiple learning 

models using bootstrap sampling to create diverse subsets of the training data. Each model is trained 

independently, and the final classification result is obtained by aggregating the predictions of all models using 

a majority voting approach. The steps of the Bagging algorithm in the classification process are described by 

the following equations: 

Input 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝐷 =  {(𝑥1, 𝑦1). . . . . . (𝑥𝑚, 𝑦𝑚) 



416 
 

𝐵𝑎𝑠𝑒 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟= L 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇 

Proses 

1.  Randomly generate training samples from the original dataset using the bootstrap sampling technique, 

where each subset may contain duplicated instances. 

2. Train a base classifier 𝐷𝑡𝐻𝑡  =  𝐿(𝐷𝑡), where LLL is the learning function applied to the bootstrapped 

training dataset 𝐷𝑡  

3. Combine the predictions from all trained models by applying a majority voting function to determine the 

final output class. 

Output 

The final classifier result is calculated using the following equation: 

𝐻(𝑋) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦  ∑
𝑇

𝑡 − 1
 1 (𝑦 = ℎ𝑡(𝑋)) 

2.7 Model Evaluation 

The performance evaluation of the classification model in this study was conducted using a Confusion Matrix, 

which consists of four key components: true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN). Based on this matrix, several evaluation metrics such as precision, sensitivity (recall), specificity, 

and F-score can be calculated to assess the effectiveness of the model. 

In addition, to obtain a more reliable accuracy measurement and to avoid training data bias, the k-fold cross-

validation technique was employed with k=10k = 10k=10. In this approach, the dataset is randomly divided 

into 10 equal subsets, and the training and testing processes are repeated 10 times, each with a different 

combination of training and test data. The final accuracy is calculated by averaging the accuracy values across 

all iterations, resulting in a more stable and representative estimate of the model’s performance. 

2.8 Result Analysis 

The final stage of this study involves the analysis phase, which aims to compare the results obtained from each 

experimental scenario described in the model training section. The objective is to identify the scenario that 

yields the best classification performance. The comparison is based on several key evaluation metrics, namely 

precision, specificity, sensitivity (recall), F1-score, and accuracy, all of which are derived from the classification 

results of each model scenario. 

3. Result and Discussions 

3.1 Dataset 

This study utilizes datasets obtained from the NASA Metrics Data Program (MDP), comprising five datasets: 

CM1, JM1, KC1, KC2, and PC1. These datasets were developed by the United States National Aeronautics and 

Space Administration (NASA) and are widely used in research related to defects in both hardware and software 

systems. The NASA datasets are publicly available through the PROMISE repository and the official MDP 

website. 

In this study, the C4.5 algorithm is implemented as the base classifier to evaluate the effectiveness of ensemble 

learning approaches, specifically using the AdaBoost and Bagging methods. The evaluation of the model focuses 

on measuring classification accuracy, with the WEKA application used as a tool for data processing and analysis. 

The detailed characteristics of each NASA MDP dataset used in this study are presented in the following table. 
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Table 2. Dataset 

loc v(g) ev(g) iv(g) n v l d i e … Defect 

tr1.1 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 … False 

1 1.0 1 1 1 1 1 1 1 1 … true 

415 59.0 50 51 1159 8411.31 0.01 103.53 81.24 870848.58 … true 

230 33.0 10 16 575 3732.82 0.03 39.82 93.74 148644.06 … true 

175 26.0 12 13 500 3123.96 0.03 29.48 105.96 92103.07 … true 

163 16.0 13 11 440 2714.77 0.03 32.25 84.14 87589.65 … true 

152 11.0 6 11 432 2629.78 0.03 31.68 83.01 83311.56 … true 

3 1.0 1 1 1 0 0 0 0 0 … False 

14 2.0 1 2 22 88 0.17 5.79 15.21 509.14 … False 

… … … … … … … … … … … … 

 

3.2 Pengujian Model 

The model evaluation in this study was conducted using the K-Fold Cross-Validation approach, with 

performance measured through the Area Under the Curve (AUC) metric. No explicit split between training and 

testing data was performed at the outset, as the entire dataset was analyzed using a 10-fold cross-validation 

scheme. In this process, the data is evenly divided into ten subsets. The model is trained and tested over 10 

iterations, where in each iteration, nine subsets are used for training and one subset is used for testing. This 

procedure continues until every subset has been used exactly once as a test set. The final performance result is 

obtained by averaging the evaluation metrics across all iterations. The AUC metric is used to assess the model's 

ability to distinguish between positive and negative classes comprehensively. 

Prior to the training phase, the dataset was imported into the WEKA application for preprocessing. During this 

stage, a filtering process was carried out using the resample method to eliminate instances considered as noise. 

The objective of this step is to enhance the quality of the training data, thereby allowing the classification model 

to achieve better performance and generalizability. 

 

Figure 2  Praprocesing (resempling data) 

The next step involves the discretization process, which is one of the techniques used during the preprocessing 

stage. Discretization aims to simplify numerical attributes by converting them into categorical attributes. This 

process is performed by dividing the range of numeric values into several discrete intervals, allowing each 

numeric value to be classified into a predefined category. This approach not only helps reduce data complexity 
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but also enhances the effectiveness of classification algorithms, which tend to perform more optimally when 

working with categorical data. 

 

 

 

 

 

 

 

Figure 3. PraProcesing data (Diskrit Datset) 

After completing the discretization stage, classification model testing was conducted using several approaches. 

First, the model was evaluated using the standalone C4.5 algorithm as a baseline. Subsequently, testing was 

carried out using the Bagging method with C4.5 as the base classifier to assess performance improvements 

through ensemble techniques. Finally, the model was also tested using the AdaBoost approach combined with 

the C4.5 algorithm to evaluate the effectiveness of adaptive weighting in improving classification outcomes.  

 

 

 

 

 

 

 

 

 

Using the same approach, namely K-Fold Cross Validation, the evaluation results of the models were obtained 

based on the accuracy values from each testing scenario. The detailed accuracy results obtained from these 

experiments are presented as follows: 

Table 3. Accuracy Results of Model Evaluation 

Dataset Test method Comparasion 

C45 C45 + Bagging C45+AdaBoost 

CM1 91,7671 92,5703 94,1767 

JM1 83,079 87,1073 88,7006 

KC1 85,5092 87,0555 87,6719 

KC2 90,8046 90,9962 91,76265 

PC1 94,6799 95,8521 97,2047 

 

Figure 5. Evaluation Model Bagging + C45 Figure 4. Evaluation Model AdaBoost + C45 
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Figure 6. Model Accuracy Results for C4.5 with Bagging 

 

 
Figure 7. Model Accuracy Results for C4.5 with AdaBoost 

 

 

Figure 8. Comparison of modeling results 

The experimental results across five datasets demonstrate that the implementation of Ensemble Learning 

methods significantly improves classification accuracy compared to the standalone C4.5 algorithm. On the CM1 

dataset, both C4.5 and C4.5 + Bagging achieved an accuracy of 92,5703%, while C4.5 + AdaBoost increased the 

accuracy to 94,1767%. For the JM1 dataset, accuracy improved from 83.08% (C4.5) to 87.11% (Bagging) and 

further to 88.70% (AdaBoost). On the KC1 dataset, the accuracy rose from 85.51% (C4.5) to 87.06% (Bagging) 

and reached 87.67% (AdaBoost). In the KC2 dataset, the accuracy slightly increased from 90.80% (C4.5) to 

91.00% (Bagging) and to 91.76% (AdaBoost). Finally, on the PC1 dataset, C4.5 achieved 94.68%, which 

improved to 95.85% with Bagging and reached the highest value of 97.20% with AdaBoost. Overall, the 

combination of C4.5 with AdaBoost consistently yielded the highest accuracy across most datasets evaluated. 

4. Conclusions and Future Works 
Based on the experimental results, it can be concluded that the application of Ensemble Learning methods has 

a significant impact on improving classification accuracy. For the CM1 dataset, the C4.5 algorithm achieved an 

accuracy of 94,17%. When combined with the Bagging technique, the accuracy remained at 92,57%, while the 

use of AdaBoost increased the accuracy to 93.97%. In the case of the JM1 dataset, C4.5 alone achieved an 

accuracy of 83.08%. This improved to 87.10% with C4.5 + Bagging, and further increased to 88.70% using C4.5 

+ AdaBoost. For the KC1 dataset, C4.5 produced an accuracy of 85.5%, which rose to 87.05% when combined 

with Bagging, and reached 87.67% with AdaBoost. On the KC2 dataset, the C4.5 algorithm alone achieved 

90.8%, improved slightly to 90.99% with Bagging, and further to 91.76% with AdaBoost. Finally, for the PC1 

dataset, the C4.5 method yielded an accuracy of 91.67%, increased to 95.85% with Bagging, and reached the 

highest accuracy of 97.2% when using C4.5 + AdaBoost. 
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Overall, these findings indicate that the use of Ensemble Learning techniques, particularly Bagging and 

AdaBoost, significantly enhances model performance compared to the standalone C4.5 algorithm. For future 

research, it is recommended to explore other classification methods such as Random Forest, Naïve Bayes, 

Support Vector Machine (SVM), or other suitable algorithms. Furthermore, combining techniques at the data 

level, such as resampling, with algorithm-level approaches may offer promising directions to further enhance 

model performance. 
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