

365

J-INTECH (Journal of Information and Technology)
Accredited Sinta 4 Ministry of Higher Education, Science and Technology
Republic of Indonesia SK No. 10/C/C3/DT.05.00/2025

E-ISSN: 2580-720X || P-ISSN: 2303-1425

Implementation and Analysis of Cloud-Native Approaches to Enhance
Scalability and Performance in Dwi Jaya Understel Workshop Information
System

Moch Bagus Tri Cahyo 1, Hamzah Setiawan 2 , Ika Ratna Indra Astutik 3

1 2 3 Universitas Muhammadiyah Sidoarjo, Fakultas Sains dan Teknologi, Program Studi Informatika, Jl. Raya
Gelam No. 250, Candi, Sidoarjo, Jawa Timur 61271, Indonesia

Keywords Abstract

Amazon RDS; AWS Lambda; Cloud-Native
Architecture; Information; Information
System; Monolithic Architecture;
Scalability; Serverless Computing; System
Performance.

This study aims to analyze the differences in scalability and
performance between a traditional monolithic system hosted
on a Virtual Private Server (VPS) and a cloud-native serverless
architecture using AWS services for an automotive workshop
information system. An experimental method was employed
using a post-test only control group design. Performance
testing was conducted with K6 as the stress testing tool under
a ramp-up load pattern of up to 60 Virtual Users (VU) to
simulate peak traffic conditions, while Grafana was used for
real-time monitoring and visualization of system metrics.The
results indicate that under peak load scenarios, the cloud-
native architecture reduced the average response time by
89.1% (from 6.05 seconds to 657.10 milliseconds) and
eliminated the error rate completely (from 0.154% to 0%),
compared to the monolithic system. Additionally, the
throughput improved by 38.2%, demonstrating better
responsiveness and stability. These findings confirm that
serverless cloud-native systems offer superior scalability and
reliability in handling dynamic and high-demand workloads,
making them well-suited for public service platforms such as
automotive workshop information systems.

*Corresponding Author:
baguschy13@gmail.com

1. Introduction
The advancement of information technology has driven modern information systems to not only operate stably

but also possess adaptive capabilities to handle sudden spikes in workload and fluctuating user demands. This

is particularly critical in public services such as automotive workshop information systems, where

transactions, customer data, and service requests may increase abruptly and simultaneously. Failure to handle

such load can lead to queues, transaction data loss, and decreased customer satisfaction . The integration of

cloud services into mobile-based information systems has also been shown to improve service management

efficiency and flexibility in handling dynamic user demands, supporting the adaptability required by workshop

environments[1] .

Compared to traditional cloud computing practices that typically run monolithic applications on virtual

infrastructure, the cloud-native approach offers greater resource efficiency and flexibility for dynamic business

needs[2]. Common issues in workshops still relying on manual data processing—such as incomplete

mailto:baguschy13@gmail.com

366

transaction records or inaccurate financial reports—can be addressed through the adoption of cloud-based

systems equipped with real-time features[3].

Cloud-native architecture provides a more flexible and efficient solution by leveraging services such as AWS

Lambda, Amazon S3, and Amazon RDS, which support auto-scaling and real-time monitoring. Automation tools

such as AWS CodeDeploy also enable more resilient and streamlined deployment processes. This approach is

suitable for workshop information systems that serve users in dynamic volumes and require a high degree of

reliability[4].

Several prior studies have explored the performance of cloud-native architecture; however, most are generic

and do not specifically address the context of automotive workshop information systems. For instance, a

benchmarking approach for evaluating the scalability of cloud-native applications was proposed in[5] , but it

was not validated in high-transaction environments such as workshops. The comparison between monolithic

and microservice applications in[6] focused solely on throughput and did not consider other critical factors

such as cold start and error rate. Additionally, the evaluation in [7]. excluded serverless technologies like AWS

Lambda, which are becoming increasingly relevant in modern scalability contexts. These limitations indicate

that further research is needed to comprehensively assess how serverless architectures perform in systems

with dynamic demands and daily transactional complexities like those found in workshop environments.

This study aims to address that gap by presenting an experimental investigation based on a real-world

automotive workshop information system, employing a serverless and cloud-native architecture. The primary

objective is to evaluate the system’s autoscaling capabilities and operational stability when facing sudden user

surges, with a particular focus on throughput and error rate—factors that have not been extensively discussed

in prior literature. This research is expected to offer practical insights for developers and system architects

when selecting implementation strategies for workloads with high scalability requirements.

1.2 Related Work
In the context of modern information systems, applications no longer serve merely as record-keeping tools but

have become the operational backbone that demands high stability and adaptability to workload

fluctuations[8] . Web-based workshop information systems have been widely implemented to address

common issues such as manual transaction logging, inaccurate financial reports, and inefficient inventory

management [9].

The cloud-native approach has emerged as a modern solution for designing large-scale and dynamic systems.

This concept emphasizes automation, elasticity, and resource management efficiency, which are highly

beneficial in environments with fluctuating workloads. One of the key technologies in this architecture is

containerization, with Docker being a widely adopted platform that enables portable and isolated deployment

processes [10].

According to the Cloud Native Computing Foundation (CNCF), cloud-native is a set of technologies that

decomposes applications into microservices and packages them into lightweight containers, which are then

deployed and orchestrated across various server environments [11].

A study conducted by Christian and Bisma demonstrated that microservice-based web applications performed

better under heavy loads compared to monolithic architectures. However, this performance improvement

comes with increased CPU consumption, while RAM usage remains relatively similar across both architectures

[12]. These findings provide a valuable reference in evaluating the effectiveness of migrating from traditional

VPS-based architecture to cloud-native architecture using AWS services.

2. Research Method
This study employs an applied experimental approach with the aim of comparing the performance and

scalability between a monolithic architecture based on a Virtual Private Server (VPS) and a cloud-native

architecture using AWS services. The research design used is the post-test only control group design, where

367

observations are conducted on two different architectures without a pre-test phase. This research was

conducted at Dwi Jaya Understel Automotive Workshop, Pasuruan, East Java, over a period of three months.

The testing was carried out by gradually applying traffic load using a stress test with a ramp pattern, which

means incrementally increasing the load over time. This method is similar to the approach used by [6], who

also applied the ramp pattern to compare the performance of monolithic and microservice-based systems .

Figure 1research process

Variables in This Study

This study involved three main variables. The independent variable was the hosting environment used in the

experiment, namely a Virtual Private Server (VPS) and a cloud-native AWS service. The dependent variable was

system performance, measured using metrics such as response time, throughput, and scalability. To ensure

consistency and reliability throughout the experiment, several control variables were maintained, including

the test data used, the workload scenarios implemented, and the testing tools implemented throughout the

performance evaluation.

Data Collection Techniques

Data collection in this study was conducted through several integrated methods. Direct observation was

performed to capture real-time system responses and identify anomalies during testing. Workload simulation

was carried out using K6 with a ramp-up pattern targeting up to 60 Virtual Users (VUs). This number was based

on a reasonable estimation of peak concurrent users, following the commonly accepted DAU-to-PCU (Daily

Active Users to Peak Concurrent Users) ratio of 10:1 to 20:1. This rule of thumb is widely used in performance

planning to estimate realistic peak loads in the absence of precise traffic logs. The goal was to simulate high-

concurrency scenarios that typically occur during busy hours and evaluate how well the system architecture

handles such conditions. This method aligns with best practices in cloud-native performance testing, where

stress testing is designed to validate scalability and resilience under realistic yet demanding usage conditions

[13].

During the test, performance metrics such as response time, throughput, and error rate were sent to InfluxDB

and visualized using Grafana dashboards for interactive monitoring. Additionally, AWS CloudWatch was

utilized in parallel to validate and ensure data consistency by monitoring server-side metrics such as Lambda

execution duration, error count, and API Gateway latency. The integration of K6, Grafana, and CloudWatch

enabled comprehensive performance evaluation and accurate comparison between monolithic and cloud-

native architectures.

368

Data Analysis Techniques

The data in this study were analyzed quantitatively by focusing on several key performance indicators. These

include the calculation of average response time to determine the overall system responsiveness, maximum

response time to identify peak delays under load, and error rate to assess the system's reliability during testing

scenarios. These metrics provide a comprehensive evaluation of system performance across both architectural

implementations.

System Architecture Design

Existing System Architecture (Simple Monolithic)

The existing system operates on a VPS server using a monolithic approach with a LAMP stack (Linux, Nginx,

MySQL, Flask). All system components run on a single machine, which simplifies the deployment and debugging

processes. However, this approach presents significant limitations in terms of scalability, load distribution, and

monitoring capabilities. This is in line with the findings of Blinowski et al. [7] who stated that monolithic

systems, while easier to develop in the early stages, become inefficient and difficult to scale as system

complexity increases. This statement is further supported by a study by Srinivasan et al. [14], which concluded

that monolithic architectures tend to be inefficient in environments requiring high scalability and often lead to

bottlenecks in complex systems due to their tight coupling within a single deployment unit and limited service

isolation.

Figure 2 Monolithic Architecture

Cloud-Native System Architecture

The automotive workshop information system was transformed into a cloud-native architecture by leveraging

various services from Amazon Web Services (AWS) to enhance scalability and infrastructure management

efficiency. On the frontend, the website is hosted using Amazon S3 with static website hosting, enabling fast

access and lower operational costs. For the backend, the system is built using the Flask framework and

deployed on AWS Lambda, connected via API Gateway, thereby supporting the serverless concept and allowing

requests to be handled elastically based on demand. The database used is Amazon RDS with MySQL, or

alternatively, DynamoDB for more flexible requirements at a larger scale. Furthermore, monitoring and logging

are conducted using Amazon CloudWatch, allowing real-time performance and activity tracking and

simplifying the troubleshooting process. This cloud architecture approach aligns with best practices in cloud-

native migration to achieve service elasticity, business process automation, and cost efficiency, as described by

Bagir et al. [15]. Additionally, Kumar et al. [16] emphasized that serverless computing is becoming an

evolutionary paradigm in modern application development due to its ability to provide automatic scaling,

reduced infrastructure management overhead, and cost optimization within cloud-native environments.

Figure 3 Cloud-Native Architecture

369

System Architecture Comparison

Table 1 Comparative Analysis of System Architectures: Monolithic vs. Cloud-Native (AWS Lambda)

Aspect Monolithic
(Before)

Cloud-Native (AWS Lambda) Aspect Monolithic
(Before)

Hosting VPS (Single
Server)

AWS Lambda (Serverless) Hosting VPS (Single
Server)

Frontend
Hosting

Stored on VPS Amazon S3 (Static Hosting) Frontend
Hosting

Stored on VPS

Backend Flask on VPS Flask via AWS Lambda + API
Gateway

Backend Flask on VPS

Database MySQL on the
server

Amazon RDS (MySQL) or
DynamoDB

Database MySQL on the
server

Table 1 presents a comparison between the system architectures before and after migration, specifically

between the monolithic VPS-based approach and the cloud-native architecture built on AWS Lambda. The

comparison includes several key aspects such as hosting, scalability, deployment, monitoring capabilities, and

cost model.

The table clearly highlights the limitations of the monolithic architecture, which relies on a single server and

manual configurations, leading to challenges in scaling and system maintenance. In contrast, the cloud-native

model enables automatic scaling, serverless deployment, and a pay-per-use cost structure, making it more

suitable for dynamic and high-demand environments such as automotive workshop information systems.

These distinctions justify the architectural transition and support the rationale behind the performance

evaluation conducted in this study.

3. Result and Discussions
This section presents the results, testing processes, and discussion of the research that has been conducted.

Result

Functional Testing Results

Table 2.Functional Testing Results

Test Case
ID

Feature Test Steps Tes data Status

TC F01
Access
Dashboard

Enter email & password, then login
Username:q
Password: q

✔

TC F02 Add Transaction
Input license plate, select spare
part, save

B1234XYZ, Engine Oil,
Rp80,000

✔

TC F03
Search Spare
Part

Type "Oli" in the search field Oli ✔

TC F04 Logout Click the logout button - ✔

Functional testing was conducted to ensure that all core features of the automotive workshop information

system operate in accordance with user requirements and system specifications. The testing covered the login

process, service transaction entry, spare part search, and logout functionality. All features passed the tests with

a Pass status, indicating that the system functioned as intended without any errors. According to Jia et al. [17],

functional testing is an essential part of software quality management, as it aims to verify whether the system

meets user requirements and predefined specifications. This approach falls under the category of black-box

testing, where testing is performed without considering the internal structure of the system and focuses on the

system’s inputs and outputs.

370

Stress Test Results

Table 3 Stress Test Results

Test
Case

Scenario
Virtual Users

(VU)
SLA Target

TC-K01 Normal Load (open page, search spare parts)
duration 1 minute

10 VU Response < 1500ms,
Error < 1%

TC-K02 Medium Load (input service transaction)
duration 1 minute

20 VU Response < 1000ms,
Error < 1%

TC-K03 Peak Load (register simulation 1–60 VU)
duration 1 minute

1-60 VU Response < 1000ms,
Error < 2%

Stress testing was conducted to evaluate the performance of the automotive workshop information system

under various load scenarios, namely normal load, medium load, and peak load, by simulating different

numbers of Virtual Users (VUs). This test measured metrics such as response time, error rate, and throughput

based on the target Service Level Agreement (SLA). According to Castro and Harman [18], performance testing

in serverless architectures such as AWS Lambda faces challenges in result stability, especially when the number

of requests increases drastically. This highlights the importance of designing representative load scenarios and

using testing tools capable of consistently simulating real-world conditions.

Figure 4 Monolithic System Performance Results on VPS

The figure presents the performance testing results of the monolithic system hosted in a traditional VPS

environment. In the “Errors per Second” panel, there is a visible spike of 5 errors at the beginning of the test.

Although no further errors occurred, the system recorded an average response time of 6.05 seconds and a peak

response time of 12.46 seconds, both significantly exceeding the <2-second SLA target. Moreover, the

"Throughput" panel illustrates that the system struggled to maintain a consistent request processing rate.

These results indicate the limitations of the monolithic architecture in handling even moderate loads and its

lack of elasticity in responding to traffic fluctuations. This aligns with the findings of Blinowski et al. [12], who

highlighted the disadvantages of monolithic systems compared to distributed and scalable cloud-native

architectures.

371

Table 4 Monolithic Architecture Stress Test Results

Test Case AVG Response MAX Response Error Rate Status

TC-K01 1.25s 2.95s 0% Failed
TC-K02 271.62ms 1.16s 0% passed
TC-K03 6.05s 12.46s 0.154% Failed

The test results show the performance of the monolithic system running on a VPS. In the normal load scenario

(TC-K01), the system recorded an average response time of 1.25 seconds (1250 ms), which is still within the

SLA threshold of <1500 ms. However, the maximum response time reached 2.95 seconds (2950 ms), indicating

performance inconsistency as it exceeded the significant tolerance limit in certain conditions. In the medium

load scenario (TC-K02), the system successfully met the SLA with an average response time of 271.62 ms and

an error rate of 0%, indicating stable performance in this condition. Meanwhile, under peak load (TC-K03), the

system experienced a significant performance drop with an average response time of 6.05 seconds and a

maximum response time of 12.46 seconds, thus failing to meet the SLA for this scenario. These results indicate

that the monolithic architecture still has limitations in handling sudden traffic spikes elastically, although it

remains stable and responsive under medium load conditions.

Figure 5Performance Test Results of AWS Lambda-Based Cloud-Native System Under Peak Load

Figure 5 illustrates the performance test results of the cloud-native system based on AWS Lambda under the

TC-K03 scenario, where the system was tested under a peak load of 60 simultaneous users. The test was

conducted to evaluate the system's ability to handle sudden traffic spikes.

The results indicate that the system successfully maintained an average response time of 657.10 milliseconds,

which is well below the 2-second SLA threshold. Moreover, no errors were recorded during the test (0% error

rate), demonstrating the system’s reliability under high-traffic conditions.

The graph also shows that latency and throughput remained stable, with no significant spikes during the period

when 60 users were actively accessing the system. This reflects the automatic scaling capability of the

serverless architecture, where AWS Lambda dynamically adjusts its capacity to meet user demand.

These findings reinforce the advantages of the cloud-native approach, which enables systems to remain

responsive and stable even during traffic surges—aligning with the findings of Blinowski et al. [7] regarding

the elasticity and scalability of microservices and serverless architectures.

372

Table 5 cloud-native arcitekture Stress Test Results

Test Case AVG Response MAX Response Error Rate Status

TC-K01 2.14s 2.56s 0% Failed
TC-K02 871.62ms 1.16s 0% Passed
TC-K03 657.10ms 72.9s 0% Passed

This section presents the performance testing results of the cloud-native system deployed using AWS services.

In the normal load scenario (TC-K01), the system failed to meet the Service Level Agreement (SLA) as the

average response time reached 2.14 seconds, exceeding the defined target. However, under the medium load

(TC-K02) and peak load (TC-K03) scenarios, the system successfully met the SLA with average response times

of 871.62 ms and 657.10 ms, respectively, and an error rate of 0%. These results indicate that cloud-native

architecture offers superior scalability in handling high loads. This finding is consistent with the study by

Blinowski et al. [7], which demonstrated that microservices-based and cloud-native systems offer advantages

in elasticity and performance under heavy traffic conditions. Meanwhile, the failure observed in the light-load

scenario can be attributed to cold start latency, a common issue in serverless environments such as AWS

Lambda [18].

Discussion of Testing Results

Based on the conducted testing, there is a significant performance difference between monolithic and cloud-

native architectures. From a functional perspective, all core features—including login, transaction creation,

spare part search, and logout – were executed successfully on both architectures, indicating that the system

meets its functional requirements.

In terms of performance, the monolithic architecture performed well under light and medium load scenarios.

In TC-K01 (normal load), it recorded an average response time of 1.23 seconds, and 271.62 ms in TC-K02

(medium load), maintaining system responsiveness. However, under a traffic spike condition in TC-K03 (peak

load), the system showed a significant performance drop, with an average response time of 6.05 seconds and

an error rate of 0.154%, reflecting its limited scalability. This is consistent with the study by Fan et al.[19], who

emphasized that monolithic systems can become performance bottlenecks under heavy traffic due to their

tightly coupled architecture and inability to scale individual components.

In contrast, the cloud-native architecture showed greater resilience in handling heavier loads. Although it

experienced a slightly longer average response time of 2.14 seconds in TC-K01 due to AWS Lambda’s cold start

latency, the system remained stable without any errors. In TC-K02, the cloud-native system maintained SLA

compliance with 871.62 ms, and in TC-K03 (peak load), it successfully handled 60 concurrent virtual users with

an average response time of 657.10 ms and 0% error rate.

These findings support the claims of Menéndez et al. [20], who compared microservices architectures using

AWS Lambda and RDS, concluding that such cloud-native setups exhibit strong performance stability and

reliability under high traffic, albeit with challenges related to initialization and cold starts. Additionally,

Christian and Bisma[6] highlighted that microservices-based systems are more stable and scalable than

monolithic systems, even though they may consume more CPU resources. This reinforces the conclusion that

cloud-native architecture is more robust under high-demand conditions.

The contrasting performance patterns observed stem from the fundamental nature of each architecture.

Monolithic systems are best suited for small-scale, low-variability environments due to their simplicity.

However, their rigidity becomes a limitation when dealing with unpredictable or high-volume traffic. On the

other hand, cloud-native systems are inherently elastic, with architectures such as AWS Lambda allowing

individual components to scale on demand. Despite the advantages, one major drawback remains: cold start

latency. Brasoveanu et al. [21] noted that cold starts in serverless environments introduce delay depending on

the runtime environment, deployment size, and configuration, typically ranging from a few hundred

milliseconds to several seconds.

373

Although cold start was not the primary focus of this study, it remains a common challenge in serverless

applications. AWS offers a feature called provisioned concurrency, which allows Lambda functions to remain

pre-initialized to reduce startup latency, although this comes with additional operational costs. For systems

requiring consistently low response times, such mitigation strategies are worth considering, as highlighted in

recent studies evaluating the effectiveness of such approaches in significantly reducing cold start impact [21].

4. Conclusions and Future Works
Based on the results of this study, it can be concluded that the cloud-native architecture outperforms the

monolithic architecture in terms of scalability and system resilience under high load conditions, thanks to its

support for autoscaling and real-time monitoring. On the other hand, the monolithic architecture delivers faster

response times under light to moderate loads but suffers from significant performance degradation when

subjected to peak load scenarios.

For an automotive workshop information system that operates in a dynamic environment and may experience

sudden traffic spikes, the cloud-native approach is more recommended. However, optimization is needed to

reduce Lambda cold start latency, in order to improve response times under light load conditions.

Furthermore, the improvements in system responsiveness, scalability, and stability are expected to contribute

positively to customer satisfaction and overall service efficiency. For an automotive workshop that depends on

timely and accurate transaction processing, the reduction in error rates and consistent performance under

heavy load can minimize service delays, reduce queuing time, and enhance customer trust. These factors may

also improve key business metrics such as service throughput, system availability, and customer retention rate.

For future research, it is suggested to include evaluation parameters related to operational costs and resource

efficiency, in order to provide a more comprehensive understanding of the benefits of migrating to cloud-native

architecture, from both technical and economic perspectives.

5. References

[1] K. M. H. and M. A. Romli, “Application for Mental Health Consultation with Scheduling Function at the

Counseling Guidance of Universitas Teknologi Yogyakarta”.

[2] L. Y. J. Lin, D. Xie, J. Huang, and Z. Liao, “A multi-dimensional extensible cloud-native service stack for

enterprises”, doi: 10.1186/s13677-022-00366-7.

[3] B. T. H. B. H. Lavenia, W. Hayuhardhika, and N. Putra, “Pengembangan Sistem Informasi Point of Sales

untuk Bengkel berbasis Cloud Computing (Studi Kasus: Bengkel Mas Pur Baturaja)”.

[4] D. D. Putra and M. R. P. Putra, “Load Balance Design of Google Cloud Compute Engine VPS with Round

Robin Method in PT. Lintas Data Indonesia”, doi: 10.33395/sinkron.v3i2.10064.

[5] G. I. S. A’fa Nafasha, I. Putu, and E. Indrawan, “Analisis Perbandingan Biaya dan Serverless Computing

pada Google Cloud Platform”.

[6] Y. C. and R. Bisma, “Studi Perbandingan Performa Aplikasi Web Monolitik dan Microservice Berbasis

Apache Kafka”.

[7] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. Microservice Architecture: A Performance

and Scalability Evaluation,” IEEE Access, vol. 10, pp. 20357–20374, 2022, doi:

10.1109/ACCESS.2022.3152803.

[8] H. S. and W. Hasselbring, “A configurable method for benchmarking scalability of cloud-native

applications”, doi: 10.1007/s10664-022-10162-1.

374

[9] D. N. and H. Mulyono, “Sistem Informasi Manajemen Bengkel Berbasis Web pada Bengkel Ikhsan Jaya

Motor”.

[10] V. R. S. R. Rakhman, M. Shadiq, and D. Syaddad, “Implementasi Cloud Native dan Multi Cloud Pada Sistem

Operasi Windows Dengan Menggunakan Docker dan Cara Penggunaannya”, doi:

10.5281/zenodo.13119907.

[11] S. D. and others, “Cloud-Native Computing: A Survey From the Perspective of Services”, doi:

10.1109/JPROC.2024.3353855.

[12] M. C. A. M. Ștefan, N. R. Rusu, and E. Ovreiu, “Empowering Healthcare: A Comprehensive Guide to

Implementing a Robust Medical Information System”, doi: 10.3390/asi7030051.

[13] J. S. Patel, “Cloud-Native Performance Testing: Strategies for Scalability and Reliability in Modern

Applications”, doi: 10.37745/ejcsit.2013/vol13n83249.

[14] D. Narsina, “Microservices vs. Monoliths: Comparative Analysis for Scalable Software Architecture

Design”, doi: 10.18034/ei.v11i2.734.

[15] M. B. and others, “Migrasi Cloud Native Architecture API Development untuk Memaksimalkan 5G

Monetization pada Jaringan AXIATA”.

[16] T. R. T. Bodner, T. Radig, D. Justen, and D. Ritter, “An Empirical Evaluation of Serverless Cloud

Infrastructure for Large-Scale Data Processing”.

[17] X. Jia, “The Role and Importance of Software Testing in Software Quality Management”.

[18] S. Eismann et al., “A Review of Serverless Use Cases and their Characteristics,” Jan. 2021, [Online].

Available: http://arxiv.org/abs/2008.11110

[19] M. G. C. F. Fan and A. Jindal, “Microservices vs serverless: A performance comparison on a cloud-native

web application”, doi: 10.5220/0009792702040215.

[20] J. M. Menéndez, J. E. L. Gayo, E. R. Canal, and A. E. Fernández, “A comparison between traditional and

Serverless technologies in a microservices setting”.

[21] R. A. A. Brasoveanu and M. Moodie, “Textual evidence for the perfunctoriness of independent medical

reviews”.

