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This study aims to analyze the differences in scalability and 
performance between a traditional monolithic system hosted 
on a Virtual Private Server (VPS) and a cloud-native serverless 
architecture using AWS services for an automotive workshop 
information system. An experimental method was employed 
using a post-test only control group design. Performance 
testing was conducted with K6 as the stress testing tool under 
a ramp-up load pattern of up to 60 Virtual Users (VU) to 
simulate peak traffic conditions, while Grafana was used for 
real-time monitoring and visualization of system metrics.The 
results indicate that under peak load scenarios, the cloud-
native architecture reduced the average response time by 
89.1% (from 6.05 seconds to 657.10 milliseconds) and 
eliminated the error rate completely (from 0.154% to 0%), 
compared to the monolithic system. Additionally, the 
throughput improved by 38.2%, demonstrating better 
responsiveness and stability. These findings confirm that 
serverless cloud-native systems offer superior scalability and 
reliability in handling dynamic and high-demand workloads, 
making them well-suited for public service platforms such as 
automotive workshop information systems. 
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1. Introduction 
The advancement of information technology has driven modern information systems to not only operate stably 

but also possess adaptive capabilities to handle sudden spikes in workload and fluctuating user demands. This 

is particularly critical in public services such as automotive workshop information systems, where 

transactions, customer data, and service requests may increase abruptly and simultaneously. Failure to handle 

such load can lead to queues, transaction data loss, and decreased customer satisfaction . The integration of 

cloud services into mobile-based information systems has also been shown to improve service management 

efficiency and flexibility in handling dynamic user demands, supporting the adaptability required by workshop 

environments[1] . 

Compared to traditional cloud computing practices that typically run monolithic applications on virtual 

infrastructure, the cloud-native approach offers greater resource efficiency and flexibility for dynamic business 

needs[2]. Common issues in workshops still relying on manual data processing—such as incomplete 
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transaction records or inaccurate financial reports—can be addressed through the adoption of cloud-based 

systems equipped with real-time features[3]. 

Cloud-native architecture provides a more flexible and efficient solution by leveraging services such as AWS 

Lambda, Amazon S3, and Amazon RDS, which support auto-scaling and real-time monitoring. Automation tools 

such as AWS CodeDeploy also enable more resilient and streamlined deployment processes. This approach is 

suitable for workshop information systems that serve users in dynamic volumes and require a high degree of 

reliability[4]. 

Several prior studies have explored the performance of cloud-native architecture; however, most are generic 

and do not specifically address the context of automotive workshop information systems. For instance, a 

benchmarking approach for evaluating the scalability of cloud-native applications was proposed in[5] , but it 

was not validated in high-transaction environments such as workshops. The comparison between monolithic 

and microservice applications in[6]  focused solely on throughput and did not consider other critical factors 

such as cold start and error rate. Additionally, the evaluation in [7]. excluded serverless technologies like AWS 

Lambda, which are becoming increasingly relevant in modern scalability contexts. These limitations indicate 

that further research is needed to comprehensively assess how serverless architectures perform in systems 

with dynamic demands and daily transactional complexities like those found in workshop environments. 

This study aims to address that gap by presenting an experimental investigation based on a real-world 

automotive workshop information system, employing a serverless and cloud-native architecture. The primary 

objective is to evaluate the system’s autoscaling capabilities and operational stability when facing sudden user 

surges, with a particular focus on throughput and error rate—factors that have not been extensively discussed 

in prior literature. This research is expected to offer practical insights for developers and system architects 

when selecting implementation strategies for workloads with high scalability requirements. 

1.2 Related Work 
In the context of modern information systems, applications no longer serve merely as record-keeping tools but 

have become the operational backbone that demands high stability and adaptability to workload 

fluctuations[8] . Web-based workshop information systems have been widely implemented to address 

common issues such as manual transaction logging, inaccurate financial reports, and inefficient inventory 

management [9]. 

The cloud-native approach has emerged as a modern solution for designing large-scale and dynamic systems. 

This concept emphasizes automation, elasticity, and resource management efficiency, which are highly 

beneficial in environments with fluctuating workloads. One of the key technologies in this architecture is 

containerization, with Docker being a widely adopted platform that enables portable and isolated deployment 

processes [10]. 

According to the Cloud Native Computing Foundation (CNCF), cloud-native is a set of technologies that 

decomposes applications into microservices and packages them into lightweight containers, which are then 

deployed and orchestrated across various server environments [11]. 

A study conducted by Christian and Bisma demonstrated that microservice-based web applications performed 

better under heavy loads compared to monolithic architectures. However, this performance improvement 

comes with increased CPU consumption, while RAM usage remains relatively similar across both architectures 

[12]. These findings provide a valuable reference in evaluating the effectiveness of migrating from traditional 

VPS-based architecture to cloud-native architecture using AWS services. 

2. Research Method 
This study employs an applied experimental approach with the aim of comparing the performance and 

scalability between a monolithic architecture based on a Virtual Private Server (VPS) and a cloud-native 

architecture using AWS services. The research design used is the post-test only control group design, where 
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observations are conducted on two different architectures without a pre-test phase. This research was 

conducted at Dwi Jaya Understel Automotive Workshop, Pasuruan, East Java, over a period of three months. 

The testing was carried out by gradually applying traffic load using a stress test with a ramp pattern, which 

means incrementally increasing the load over time. This method is similar to the approach used by [6], who 

also applied the ramp pattern to compare the performance of monolithic and microservice-based systems . 

 

Figure 1research process 

Variables in This Study 

This study involved three main variables. The independent variable was the hosting environment used in the 

experiment, namely a Virtual Private Server (VPS) and a cloud-native AWS service. The dependent variable was 

system performance, measured using metrics such as response time, throughput, and scalability. To ensure 

consistency and reliability throughout the experiment, several control variables were maintained, including 

the test data used, the workload scenarios implemented, and the testing tools implemented throughout the 

performance evaluation. 

Data Collection Techniques 

Data collection in this study was conducted through several integrated methods. Direct observation was 

performed to capture real-time system responses and identify anomalies during testing. Workload simulation 

was carried out using K6 with a ramp-up pattern targeting up to 60 Virtual Users (VUs). This number was based 

on a reasonable estimation of peak concurrent users, following the commonly accepted DAU-to-PCU (Daily 

Active Users to Peak Concurrent Users) ratio of 10:1 to 20:1. This rule of thumb is widely used in performance 

planning to estimate realistic peak loads in the absence of precise traffic logs. The goal was to simulate high-

concurrency scenarios that typically occur during busy hours and evaluate how well the system architecture 

handles such conditions. This method aligns with best practices in cloud-native performance testing, where 

stress testing is designed to validate scalability and resilience under realistic yet demanding usage conditions 

[13]. 

During the test, performance metrics such as response time, throughput, and error rate were sent to InfluxDB 

and visualized using Grafana dashboards for interactive monitoring. Additionally, AWS CloudWatch was 

utilized in parallel to validate and ensure data consistency by monitoring server-side metrics such as Lambda 

execution duration, error count, and API Gateway latency. The integration of K6, Grafana, and CloudWatch 

enabled comprehensive performance evaluation and accurate comparison between monolithic and cloud-

native architectures. 
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Data Analysis Techniques 

The data in this study were analyzed quantitatively by focusing on several key performance indicators. These 

include the calculation of average response time to determine the overall system responsiveness, maximum 

response time to identify peak delays under load, and error rate to assess the system's reliability during testing 

scenarios. These metrics provide a comprehensive evaluation of system performance across both architectural 

implementations. 

System Architecture Design 

Existing System Architecture (Simple Monolithic) 

The existing system operates on a VPS server using a monolithic approach with a LAMP stack (Linux, Nginx, 

MySQL, Flask). All system components run on a single machine, which simplifies the deployment and debugging 

processes. However, this approach presents significant limitations in terms of scalability, load distribution, and 

monitoring capabilities. This is in line with the findings of Blinowski et al. [7] who stated that monolithic 

systems, while easier to develop in the early stages, become inefficient and difficult to scale as system 

complexity increases. This statement is further supported by a study by Srinivasan et al. [14], which concluded 

that monolithic architectures tend to be inefficient in environments requiring high scalability and often lead to 

bottlenecks in complex systems due to their tight coupling within a single deployment unit and limited service 

isolation. 

 

Figure 2 Monolithic Architecture 

Cloud-Native System Architecture 

The automotive workshop information system was transformed into a cloud-native architecture by leveraging 

various services from Amazon Web Services (AWS) to enhance scalability and infrastructure management 

efficiency. On the frontend, the website is hosted using Amazon S3 with static website hosting, enabling fast 

access and lower operational costs. For the backend, the system is built using the Flask framework and 

deployed on AWS Lambda, connected via API Gateway, thereby supporting the serverless concept and allowing 

requests to be handled elastically based on demand. The database used is Amazon RDS with MySQL, or 

alternatively, DynamoDB for more flexible requirements at a larger scale. Furthermore, monitoring and logging 

are conducted using Amazon CloudWatch, allowing real-time performance and activity tracking and 

simplifying the troubleshooting process. This cloud architecture approach aligns with best practices in cloud-

native migration to achieve service elasticity, business process automation, and cost efficiency, as described by 

Bagir et al. [15]. Additionally, Kumar et al. [16] emphasized that serverless computing is becoming an 

evolutionary paradigm in modern application development due to its ability to provide automatic scaling, 

reduced infrastructure management overhead, and cost optimization within cloud-native environments. 

 

Figure 3 Cloud-Native  Architecture 
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System Architecture Comparison 

Table 1 Comparative Analysis of System Architectures: Monolithic vs. Cloud-Native (AWS Lambda) 

Aspect Monolithic 
(Before) 

Cloud-Native (AWS Lambda) Aspect Monolithic 
(Before) 

Hosting VPS (Single 
Server) 

AWS Lambda (Serverless) Hosting VPS (Single 
Server) 

Frontend 
Hosting 

Stored on VPS Amazon S3 (Static Hosting) Frontend 
Hosting 

Stored on VPS 

Backend Flask on VPS Flask via AWS Lambda + API 
Gateway 

Backend Flask on VPS 

Database MySQL on the 
server 

Amazon RDS (MySQL) or 
DynamoDB 

Database MySQL on the 
server 

 
Table 1 presents a comparison between the system architectures before and after migration, specifically 

between the monolithic VPS-based approach and the cloud-native architecture built on AWS Lambda. The 

comparison includes several key aspects such as hosting, scalability, deployment, monitoring capabilities, and 

cost model. 

The table clearly highlights the limitations of the monolithic architecture, which relies on a single server and 

manual configurations, leading to challenges in scaling and system maintenance. In contrast, the cloud-native 

model enables automatic scaling, serverless deployment, and a pay-per-use cost structure, making it more 

suitable for dynamic and high-demand environments such as automotive workshop information systems. 

These distinctions justify the architectural transition and support the rationale behind the performance 

evaluation conducted in this study. 

3. Result and Discussions 
This section presents the results, testing processes, and discussion of the research that has been conducted. 

Result 

Functional Testing Results 

Table 2.Functional Testing Results 

Test Case 
ID 

Feature Test Steps Tes data Status 

TC F01 
Access 
Dashboard 

Enter email & password, then login 
Username:q 
Password: q 

✔ 

TC F02 Add Transaction 
Input license plate, select spare 
part, save 

B1234XYZ, Engine Oil, 
Rp80,000 

✔ 

TC F03 
Search Spare 
Part 

Type "Oli" in the search field Oli ✔ 

TC F04 Logout Click the logout button - ✔ 

Functional testing was conducted to ensure that all core features of the automotive workshop information 

system operate in accordance with user requirements and system specifications. The testing covered the login 

process, service transaction entry, spare part search, and logout functionality. All features passed the tests with 

a Pass status, indicating that the system functioned as intended without any errors. According to Jia et al. [17], 

functional testing is an essential part of software quality management, as it aims to verify whether the system 

meets user requirements and predefined specifications. This approach falls under the category of black-box 

testing, where testing is performed without considering the internal structure of the system and focuses on the 

system’s inputs and outputs. 
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Stress Test Results 

Table 3 Stress Test Results 

Test 
Case 

Scenario 
Virtual Users 

(VU) 
SLA Target 

TC-K01 Normal Load (open page, search spare parts) 
duration 1 minute 

10 VU Response < 1500ms, 
Error < 1% 

TC-K02 Medium Load (input service transaction) 
duration 1 minute 

20 VU Response < 1000ms, 
Error < 1% 

TC-K03 Peak Load (register simulation 1–60 VU) 
duration 1 minute 

1-60 VU Response < 1000ms, 
Error < 2% 

Stress testing was conducted to evaluate the performance of the automotive workshop information system 

under various load scenarios, namely normal load, medium load, and peak load, by simulating different 

numbers of Virtual Users (VUs). This test measured metrics such as response time, error rate, and throughput 

based on the target Service Level Agreement (SLA). According to Castro and Harman [18], performance testing 

in serverless architectures such as AWS Lambda faces challenges in result stability, especially when the number 

of requests increases drastically. This highlights the importance of designing representative load scenarios and 

using testing tools capable of consistently simulating real-world conditions. 

 

Figure 4 Monolithic System Performance Results on VPS 

The figure presents the performance testing results of the monolithic system hosted in a traditional VPS 

environment. In the “Errors per Second” panel, there is a visible spike of 5 errors at the beginning of the test. 

Although no further errors occurred, the system recorded an average response time of 6.05 seconds and a peak 

response time of 12.46 seconds, both significantly exceeding the <2-second SLA target. Moreover, the 

"Throughput" panel illustrates that the system struggled to maintain a consistent request processing rate. 

These results indicate the limitations of the monolithic architecture in handling even moderate loads and its 

lack of elasticity in responding to traffic fluctuations. This aligns with the findings of Blinowski et al. [12], who 

highlighted the disadvantages of monolithic systems compared to distributed and scalable cloud-native 

architectures. 
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Table 4 Monolithic Architecture Stress Test Results 

Test Case AVG Response MAX Response Error Rate Status 

TC-K01 1.25s 2.95s 0% Failed 
TC-K02 271.62ms 1.16s 0% passed 
TC-K03 6.05s 12.46s 0.154% Failed 

The test results show the performance of the monolithic system running on a VPS. In the normal load scenario 

(TC-K01), the system recorded an average response time of 1.25 seconds (1250 ms), which is still within the 

SLA threshold of <1500 ms. However, the maximum response time reached 2.95 seconds (2950 ms), indicating 

performance inconsistency as it exceeded the significant tolerance limit in certain conditions. In the medium 

load scenario (TC-K02), the system successfully met the SLA with an average response time of 271.62 ms and 

an error rate of 0%, indicating stable performance in this condition. Meanwhile, under peak load (TC-K03), the 

system experienced a significant performance drop with an average response time of 6.05 seconds and a 

maximum response time of 12.46 seconds, thus failing to meet the SLA for this scenario. These results indicate 

that the monolithic architecture still has limitations in handling sudden traffic spikes elastically, although it 

remains stable and responsive under medium load conditions. 

 

Figure 5Performance Test Results of AWS Lambda-Based Cloud-Native System Under Peak Load 

Figure 5 illustrates the performance test results of the cloud-native system based on AWS Lambda under the 

TC-K03 scenario, where the system was tested under a peak load of 60 simultaneous users. The test was 

conducted to evaluate the system's ability to handle sudden traffic spikes. 

The results indicate that the system successfully maintained an average response time of 657.10 milliseconds, 

which is well below the 2-second SLA threshold. Moreover, no errors were recorded during the test (0% error 

rate), demonstrating the system’s reliability under high-traffic conditions. 

The graph also shows that latency and throughput remained stable, with no significant spikes during the period 

when 60 users were actively accessing the system. This reflects the automatic scaling capability of the 

serverless architecture, where AWS Lambda dynamically adjusts its capacity to meet user demand. 

These findings reinforce the advantages of the cloud-native approach, which enables systems to remain 

responsive and stable even during traffic surges—aligning with the findings of Blinowski et al. [7] regarding 

the elasticity and scalability of microservices and serverless architectures. 
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Table 5 cloud-native arcitekture Stress Test Results 

Test Case AVG Response MAX Response Error Rate Status 

TC-K01 2.14s 2.56s 0% Failed 
TC-K02 871.62ms 1.16s 0% Passed 
TC-K03 657.10ms 72.9s 0% Passed 

This section presents the performance testing results of the cloud-native system deployed using AWS services. 

In the normal load scenario (TC-K01), the system failed to meet the Service Level Agreement (SLA) as the 

average response time reached 2.14 seconds, exceeding the defined target. However, under the medium load 

(TC-K02) and peak load (TC-K03) scenarios, the system successfully met the SLA with average response times 

of 871.62 ms and 657.10 ms, respectively, and an error rate of 0%. These results indicate that cloud-native 

architecture offers superior scalability in handling high loads. This finding is consistent with the study by 

Blinowski et al. [7], which demonstrated that microservices-based and cloud-native systems offer advantages 

in elasticity and performance under heavy traffic conditions. Meanwhile, the failure observed in the light-load 

scenario can be attributed to cold start latency, a common issue in serverless environments such as AWS 

Lambda [18]. 

Discussion of Testing Results 

Based on the conducted testing, there is a significant performance difference between monolithic and cloud-

native architectures. From a functional perspective, all core features—including login, transaction creation, 

spare part search, and logout – were executed successfully on both architectures, indicating that the system 

meets its functional requirements. 

In terms of performance, the monolithic architecture performed well under light and medium load scenarios. 

In TC-K01 (normal load), it recorded an average response time of 1.23 seconds, and 271.62 ms in TC-K02 

(medium load), maintaining system responsiveness. However, under a traffic spike condition in TC-K03 (peak 

load), the system showed a significant performance drop, with an average response time of 6.05 seconds and 

an error rate of 0.154%, reflecting its limited scalability. This is consistent with the study by Fan et al.[19], who 

emphasized that monolithic systems can become performance bottlenecks under heavy traffic due to their 

tightly coupled architecture and inability to scale individual components. 

In contrast, the cloud-native architecture showed greater resilience in handling heavier loads. Although it 

experienced a slightly longer average response time of 2.14 seconds in TC-K01 due to AWS Lambda’s cold start 

latency, the system remained stable without any errors. In TC-K02, the cloud-native system maintained SLA 

compliance with 871.62 ms, and in TC-K03 (peak load), it successfully handled 60 concurrent virtual users with 

an average response time of 657.10 ms and 0% error rate. 

These findings support the claims of Menéndez et al. [20], who compared microservices architectures using 

AWS Lambda and RDS, concluding that such cloud-native setups exhibit strong performance stability and 

reliability under high traffic, albeit with challenges related to initialization and cold starts. Additionally, 

Christian and Bisma[6] highlighted that microservices-based systems are more stable and scalable than 

monolithic systems, even though they may consume more CPU resources. This reinforces the conclusion that 

cloud-native architecture is more robust under high-demand conditions. 

The contrasting performance patterns observed stem from the fundamental nature of each architecture. 

Monolithic systems are best suited for small-scale, low-variability environments due to their simplicity. 

However, their rigidity becomes a limitation when dealing with unpredictable or high-volume traffic. On the 

other hand, cloud-native systems are inherently elastic, with architectures such as AWS Lambda allowing 

individual components to scale on demand. Despite the advantages, one major drawback remains: cold start 

latency. Brasoveanu et al.  [21] noted that cold starts in serverless environments introduce delay depending on 

the runtime environment, deployment size, and configuration, typically ranging from a few hundred 

milliseconds to several seconds. 
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Although cold start was not the primary focus of this study, it remains a common challenge in serverless 

applications. AWS offers a feature called provisioned concurrency, which allows Lambda functions to remain 

pre-initialized to reduce startup latency, although this comes with additional operational costs. For systems 

requiring consistently low response times, such mitigation strategies are worth considering, as highlighted in 

recent studies evaluating the effectiveness of such approaches in significantly reducing cold start impact [21]. 

4. Conclusions and Future Works 
Based on the results of this study, it can be concluded that the cloud-native architecture outperforms the 

monolithic architecture in terms of scalability and system resilience under high load conditions, thanks to its 

support for autoscaling and real-time monitoring. On the other hand, the monolithic architecture delivers faster 

response times under light to moderate loads but suffers from significant performance degradation when 

subjected to peak load scenarios. 

For an automotive workshop information system that operates in a dynamic environment and may experience 

sudden traffic spikes, the cloud-native approach is more recommended. However, optimization is needed to 

reduce Lambda cold start latency, in order to improve response times under light load conditions. 

Furthermore, the improvements in system responsiveness, scalability, and stability are expected to contribute 

positively to customer satisfaction and overall service efficiency. For an automotive workshop that depends on 

timely and accurate transaction processing, the reduction in error rates and consistent performance under 

heavy load can minimize service delays, reduce queuing time, and enhance customer trust. These factors may 

also improve key business metrics such as service throughput, system availability, and customer retention rate. 

For future research, it is suggested to include evaluation parameters related to operational costs and resource 

efficiency, in order to provide a more comprehensive understanding of the benefits of migrating to cloud-native 

architecture, from both technical and economic perspectives. 
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